
Explaining Actual Causation via Reasoning about Actions and Change

A Thesis

Submitted to the Faculty

of

Drexel University

by

Emily C. LeBlanc

in partial fulfillment of the

requirements for the degree

of

Doctor of Philosophy

June 2019

c© Copyright 2019

Emily C. LeBlanc.

This work is licensed under the terms of the Creative Commons Attribution-ShareAlike

4.0 International license. The license is available at

http://creativecommons.org/licenses/by-sa/4.0/.

ii

Acknowledgments

I am profoundly grateful to my thesis advisor Marcello Balduccini for his invaluable feedback,

guidance, and support while pursuing my PhD. I am very thankful for all he has taught me and for

his encouragement and availability over the last six years. Without him, none of this would have

been possible. His influence on my work and my development as a researcher and a professional

has been substantial. I am truly fortunate to have Marcello to look up to.

I would also like to thank Santiago Ontañón for taking on the role of my official advisor for the

last few years of my time in the program. His support was crucial to my ability to complete this

work, and I thank him for bringing me into the GAIMS lab and providing a perfect environment in

which to work.

I am very grateful to my entire dissertation committee, Santiago Ontañón, Marcello Balduccini,

Dario Salvucci, Vasilis Gkatzelis, Steven Gustafson, and Luis Tari, for their thoughtful questions

and feedback which substantially improved the quality of this dissertation.

I am very thankful for the constant support of the Drexel Department of Computer Science that

I’ve received over the course of my time in this program. The opportunities provided to me by the

department have significantly contributed to my development as a professional in my field. I am

also thankful to the members of the GAIMS lab, who made the months leading up to the completion

of my dissertation fun and interesting. I have been very happy to be a part of this group.

I am also very grateful to Bill Regli for bringing me into the department as a PhD student in 2013,

and for involving me from that start in a fascinating project that gave me unparalleled experience

and ultimately set the stage for finding my research interests.

I am thankful to the many researchers in the community with which I have had numerous

conversations about this work, namely, Joost Vennekens for providing invaluable feedback and

ongoing guidance, as well as Chitta Baral for his mentorship at the Doctoral Consortium of the

15th International Conference on Principles of Knowledge Representation and Reasoning, whose

iii

thoughtful advice resulted in a sharp focusing of my dissertation topic.

I also want to thank the researchers I’ve worked with during two internships with GE Global Re-

search, Luis Tari and Steven Gustafson, for allowing to me to work on new and interesting projects.

These experiences enabled me to work on real-world problems with talented industry profession-

als, and greatly encouraged the development of my independence as a researcher.

I am very grateful to my mother, father, and sister for their encouragement and support through-

out my life and over the course of my education. Each of them has motivated my creativity and

curiosity from childhood to present day. I would not be here without them, and I am always ap-

preciative of the positive influences they have on me.

I also want to thank Chris, Meagan, Catherine, and Ulysses Macklin for their friendship over

many years. They infuse my life with humor and fun, and their support has been and continues to

be invaluable to me. They inspire me in many ways and I am grateful that they are in my family.

Finally, I want express my gratitude for my partner, Duc Nguyen. Detailing the countless ways

that he positively influences my life would likely result in another dissertation. His understanding,

patience, and love have been instrumental in helping me get through the hard times and celebrate

the good ones. I am incredibly lucky to have him in my life and I am grateful for every day together.

iv

Table of Contents

LIST OF TABLES . viii

LIST OF FIGURES . ix

ABSTRACT . x

1. INTRODUCTION . 1

1.1 Explaining Actual Causation . 2

1.2 Organization . 3

2. BACKGROUND . 6

2.1 Environments of Interest . 6

2.2 Reasoning about Actions and Change . 7

2.2.1 Syntax of AL . 7

2.2.2 Semantics of AL . 8

2.3 Answer Set Programming . 10

2.3.1 Syntax of ASP . 10

2.3.2 Semantics of ASP . 12

2.3.3 Properties of Answer Sets . 13

3. THEORETICAL FRAMEWORK . 15

3.1 Running Example . 15

3.2 Framework Definitions . 18

3.2.1 Transition States and Causing Compound Events . 18

3.2.2 Direct Cause . 19

3.2.3 Simple Notion of Indirect Cause . 20

v

3.2.4 Improved Definition of Indirect Cause . 22

3.3 Discussion . 26

4. EXAMPLES . 28

4.1 Scenario Paths . 28

4.1.1 Rock Throwing Problem . 29

4.2 Yale Shooting Problem . 32

4.2.1 Direct . 32

4.2.2 Indirect . 33

4.2.3 Novel Extension . 34

4.3 Firing Squad Problem . 37

4.4 Self-Driving Car Problem . 39

4.4.1 Example Preliminaries . 40

4.4.2 Crash Scenario and Explanations . 41

5. IMPLEMENTATION . 44

5.1 Implementation Details . 44

5.1.1 Problem Translation . 44

5.1.2 Semantics of Action Language AL . 45

5.1.3 Transition States and Causing Compound Events . 47

5.1.4 Direct Cause . 48

5.1.5 Simple Notion of Indirect Cause . 49

5.1.6 Improved Definition of Indirect Cause . 52

5.2 Theoretical Results . 58

5.3 ASP Examples . 80

5.3.1 Extended Yale Shooting Problem . 80

TABLE OF CONTENTS TABLE OF CONTENTS

vi

5.3.2 Self-driving Car Problem . 82

6. EMPIRICAL STUDIES . 87

6.1 Full Concurrency and Strict Sequences . 88

6.1.1 Setup . 88

6.1.2 Experiment 1 . 89

6.1.3 Experiment 2 . 90

6.1.4 Experiment 3 . 92

6.2 Single-Source Chains . 92

6.2.1 Experiment 4 . 92

6.3 Multi-Source Chains . 93

6.3.1 Experiment 5 . 94

6.4 Conclusions . 94

7. RELATED WORK . 96

7.1 HP Account of Actual Causation . 96

7.1.1 Discussion . 98

7.2 CP-logic Account of Actual Causation . 100

7.2.1 Discussion . 102

7.3 Situation Calculus Semantics for Actual Causality . 103

7.3.1 Discussion . 104

7.4 Additional Approaches . 107

7.4.1 Causal Logic Programming . 107

7.4.2 Discussion . 109

8. CONCLUSIONS AND FUTURE WORK . 110

8.1 Open Problems . 110

TABLE OF CONTENTS TABLE OF CONTENTS

vii

8.2 Future Work . 112

BIBLIOGRAPHY . 114

VITA . 119

viii

List of Tables

3.1 Tabular representation of path ρE ∈ τ(ADE). 16

3.2 Explanation of how each literal of θE was caused in path ρE 17

4.1 Overview of explanations of {hasRock(suzy)} and {isBroken(bottle)} in transition states

σ2 and σ3, respectively. 32

4.2 Overview of outcomes {¬isAlive(turkey)}, {isLoaded(gun)}, and {hasGun(suzy)} in

transition states σ4,σ3, and σ2 in ρY , respectively. 37

ix

List of Figures

4.1 Path ρB ∈ S(ΨB) is a representation of the bottle breaking scenario. 30

4.2 Path ρY ∈ S(ΨY) is a representation of the Yale shooting scenario. 33

4.3 Path ρY ∈ S(ΨY) is a representation of the Yale shooting scenario. 34

4.4 Path ρY ∈ S(ΨY) is a representation of the Yale shooting scenario. 35

4.5 Path ρF ∈ S(ΨF) is a representation of the firing squad scenario. 38

4.6 Path ρS is a representation of car S’s crash scenario. 42

6.1 Comparing the time to explain up to and including 15 literals for all fully concurrent

and strict sequence cases (direct and indirect) . 89

6.2 Comparing the time to explain up to and including 100 literals for fully concurrent direct

cause (FCDC), single sequence direct cause (SSDC), and single sequence indirect cause

(SSIC). 90

6.3 Observing the time required to explain up to and including 1000 literals for fully con-

current direct causes (FCDC). 91

6.4 Observing the time required to explain up to and including 1000 literals for single-source

chains ranging in length from 1 to 1000 links. 93

6.5 Observing the time required to explain one literal for N-source chains range in length

from 1 to 10 links, where N ranges from 1 to 10. 95

7.1 Causal proof of atom dead for Yale Shooting program . 108

x

Abstract
Explaining Actual Causation via Reasoning about Actions and Change

Emily C. LeBlanc
Santiago Ontañón, Ph.D. and Marcello Balduccini, Ph.D.

The goal of this research is to investigate and demonstrate the suitability of action languages and

answer set programming (ASP) to design and realize a novel framework for explaining actual causa-

tion. Actual causation is a broad term that encompasses all possible antecedents that have played a

meaningful role in producing a consequence. Attempts to characterize reasoning about actual cau-

sation have largely pursued counterfactual analysis of a scenario, inspired by the intuition that if

X caused Y , then not Y if not X . However, it has been widely documented that the counterfactual

criteria alone is problematic and fails to recognize causation in a number of straightforward cases.

Departing from a counterfactual reasoning approach, our framework favors reasoning about the

underlying causal mechanisms of the scenario itself in order to explain how an outcome of interest

came to be. The framework leverages techniques from Reasoning about Actions and Change to

support reasoning about domains that change over time in response to a sequence of events. The

action language AL enables us to represent a scenario in terms of the evolution of the state of the

world over the course of the scenario’s events. AL lends itself naturally to an automated translation

in Answer Set Programming (ASP), using which, reasoning tasks of considerable complexity can

be specified and executed. In this dissertation, we present a theoretical framework for reasoning

about actual causation and demonstrate that the framework enables reasoning about traditionally

challenging examples of actual cause. We also present a sound and complete implementation of

the theoretical framework in ASP, along with a collection of empirical studies that evaluate and

analyze the framework’s performance on a number of novel and challenging problems.

1

Chapter 1: Introduction

“The complexities of cause and effect defy analysis.”

— Douglas Adams

The goal of this research is to investigate and demonstrate the suitability of action languages

and answer set programming (ASP) to design and realize a novel framework for reasoning about

and explaining actual causation. Also referred to as causation in fact, actual cause is a broad term

that encompasses all possible antecedents that have played a meaningful role in producing a con-

sequence [1]. Reasoning about actual cause concerns determining how a particular consequence

came to be in a given scenario, and the topic been studied extensively in numerous fields including

philosophy, law, and, more recently, computer science and artificial intelligence.

Attempts to mathematically characterize actual causation have largely pursued counterfactual

analysis of structural equations (e.g., [2–6]), neuron diagrams [7, 8], and other logical formalisms

(see e.g., [9]). Counterfactual accounts of actual causation are inspired by the human intuition that

if X caused Y , then not Y if not X [10]. At a high level, this approach involves looking for possible

worlds in which Y is true and X is not. If such a world is found, then X is not a cause of Y . It

has been widely documented, however, that the counterfactual criteria alone is problematic and

fails to recognize causation in a number of common cases such as overdetermination (i.e., multiple

causes for the effect), preemption (i.e., one cause “blocks” another’s effect), and contributory cau-

sation (i.e., causes must occur together to achieve the effect) [11, 12]. Subsequent approaches have

addressed some of the shortcomings associated with the counterfactual criterion by modifying the

existing definitions [13, 14], introducing supplemental definitions [9, 15, 16], and by modeling time

[17] with some improved results. In spite of these improvements, there is still no widely accepted

definition of actual cause.

Departing from the counterfactual intuition and reasoning about possible worlds, our frame-

work favors reasoning about the underlying causal mechanisms of the scenario itself in order to

2

explain actual causation of an outcome of interest. Our framework uses techniques from Reason-

ing about Actions and Change (RAC) to support reasoning about domains that change over time in

response to a sequence of events. The action languageAL [18] enables us to represent a scenario as

the evolution of state over the course of the scenario’s events. Moreover, the elements ofAL seman-

tics can be used to define notions of direct and indirect cause, and the language’s solution to the

frame problem can be leveraged to detect the “appearance” of an outcome of interest in a scenario.

Our position on reasoning about actual cause is supported by recent work in the area [19, 20] that

shares similar intuition to our own about the appearance of outcomes. Finally, AL lends itself nat-

urally to an automated translation in ASP, using which, reasoning tasks of considerable complexity

can be specified and executed.

1.1 Explaining Actual Causation

Sophisticated actual causal reasoning has long been prevalent in human society and continues to

have an undeniable impact on the advancement of science, technology, medicine, and other fields

that are critical to the success of modern society. From the development of ancient tools to mod-

ern root cause analysis in business and industry, reasoning about causal influence in a historical

sequence of events enables us to diagnose the cause of an outcome of interest and gives us insight

into how to bring about, or even prevent, similar outcomes in future scenarios. Consider problems

such as explaining the occurrence of a set of suspicious observations in a network security system,

reasoning about the efficiency of actions taken in an emergency evacuation scenario, or investi-

gating how an automatically generated workflow produced some unexpected results. It is easy to

imagine that analyzing such (potentially very complex) scenarios requires the ability to represent

and reason about how the state of the world has been changed by the scenario’s events to produce

some outcome of interest.

Consider the behavior of an advanced cyber-physical system such as a self-driving car, rea-

soning about causation (e.g., blame or praise) becomes significantly more complex – the car likely

contains a large number of software and hardware modules (possibly from different vendors), there

may be other cars and pedestrians involved in the scenario of interest, and there may have been

CHAPTER 1: INTRODUCTION 1.1 EXPLAINING ACTUAL CAUSATION

3

wireless communication with other vehicles or a central server, all of which may influence the

actions taken by the car’s control module over the course of its drive. To reach an intuitively satis-

factory explanation of why some outcome of interest came to be in such a domain, the insights that

have been produced by the decades-long study of actual causation seem indispensable.

Modern work on actual causation originated in philosophy with the seminal paper by Lewis

[10]. His work, like that of other philosophers following him, was primarily theoretical and not in-

tended to be put to practical use. The famous Halpern-Pearl (HP) paper [3] initiated interest in this

concept within the field of AI and it constitutes a first milestone on the way towards applications

of the concept of actual causation. However, neither the HP paper nor the many that have followed

it (e.g., see Chapter 7) have yet reached the point where their results could be directly applied, for

example, in the context of a self-driving car as proposed here, or in other similarly complex scenar-

ios. We believe that this is due, at least in part, to a lack of distinction between the laws that govern

individual states of the world and events whose occurrence cause state to evolve.

We also believe that our approach to reasoning about what actually happened rather than what

could have happened sets us apart from the majority of the work in this research area (discussed

in greater detail in Chapter 7), and our choice of AL as a formalism positions the approach for

potential use in practical settings via translation to an implementation in ASP.

The primary contributions of this dissertation are as follows:

1. A novel theoretical framework for reasoning about actual causation in terms of the semantics

of the action language AL.

2. A sound and complete implementation of the framework in ASP.

3. Empirical studies of the practical feasibility of the implementation on increasingly large and

complex novel causal scenarios, with respect to time.

1.2 Organization

We now present the organization of the dissertation.

CHAPTER 1: INTRODUCTION 1.2 ORGANIZATION

4

• Chapter 2 contains background information about the environments of interest for which the

framework is defined, the action language AL, and ASP.

• Chapter 3 presents the theoretical framework for explaining actual causation. The chapter

contains a novel running example which we use to aid our discussion of the framework’s

definitions. In addition to presenting the definition of direct cause, we present a simple no-

tion of indirect causation and identify two important drawbacks to the definition. Next, we

present an improved definition that addresses the identified shortcomings and provides ad-

ditional information about indirect causes. Finally, we draw initial conclusions about the

framework’s ability to handle traditionally challenging cases of causation.

• Chapter 4, we use the framework to reason about examples from the literature that have been

used to challenge the counterfactual definition of actual cause, as well as a novel example

inspired by the self-driving car scenario outlined above.

• Chapter 5 provides implementations of the theoretical framework in ASP and presents theo-

retical results about soundness and completeness of the program for computing direct cause

and the improved definition of indirect cause. We also present ASP translations of a subset of

the examples from Chapter 4.

• Chapter 6 presents experimental results from empirical studies aiming to assess the practical

feasibility of the approach with respect to time. To the best of our knowledge, there is no

established set of benchmarks for the type of reasoning presented in this dissertation, and

so we have generated a set of novel problem instances that allow us to examine and make

initial conclusions about the performance of the implementation on a number of interesting

and increasingly complex causal scenarios.

• Chapter 7 provides in-depth discussions about related approaches. We will present an over-

view of technical approaches and comparative discussion for the most well-known and

widely studied approach in the field [3], the work that led us to our intuition about represent-

ing scenarios as the evolution of state in response to events [21], and the work that leverages

CHAPTER 1: INTRODUCTION 1.2 ORGANIZATION

5

similar intuition to our own in reasoning about scenarios [19].

• Chapter 8 presents our conclusions and suggests avenues for future work.

CHAPTER 1: INTRODUCTION 1.2 ORGANIZATION

6

Chapter 2: Background

Background

This chapter contains background information on the classes of problems for which the framework

is designed, action language AL, which we use to represent domains that change over time, and

answer set programming which we use to implement the computation of direct and indirect causes.

2.1 Environments of Interest

In this work, we use the term dynamic domain to refer to an environment whose state changes in

response to the execution of actions. Dynamic domains of interest in this work satisfy the following

conditions:

1. state evolves in discrete steps

2. states are defined by a set of boolean statements called fluents

3. the effects of events are instantaneous (i.e., there are no time-delayed effects)

4. the effects of events are deterministic

5. all fluents are observable, that is to say there is no uncertainty in the values of fluents

These conditions reduce the complexity of the presentation and allow the reader to focus on the

core contributions of the work, but our study leads us to speculate that likely none is essential to

the validity of the study. In fact, we believe that most can be relaxed in future studies by adopting

existing approaches from the literature. For instance, boolean statements could be replaced by

numerical values as in C+[22], actions and events with duration could be dealt with by introducing

processes [23, 24], non-determinism could be introduced in a way similar to [25, 26], and dealing

with non-observable fluents could reflect the contributions of [27].

7

2.2 Reasoning about Actions and Change

Reasoning about Actions and Change is concerned with representing the properties of actions [28].

Research in this field studies reasoning over domain knowledge and, specifically, about the di-

rect and indirect effects of actions, and has uncovered a variety of interesting representation and

reasoning problems [29–34]. In our work, we aim to leverage mentions of observed events and do-

main knowledge to determine a detailed picture of a scenario over time. Here we provide a more

technical discussion of RAC and action language AL.

Action languages [35] are formalisms used to describe the effects of actions, or events1, in a

domain. In these languages, the domain is represented by a transition diagram, e.g. a directed

graph with nodes corresponding to the states of the domain and arcs corresponding to transitions

between states. Arcs are labeled by events, according to the intuition that transitions between states

are initiated by the occurrence of events.

Action languages are good candidates for the high-level specification of domain models as their

relative simplicity and clear intuitive reading of the statements usually allow the designer to have

reasonable confidence in the correctness of their domain specifications. For the representation of

domains and their evolution over time, in this work we rely on the action languageAL [18], whose

syntax and semantics we present next.

2.2.1 Syntax of AL

The language AL builds upon an alphabet consisting of a set F of fluents and a set E of elementary

events. Fluents are boolean properties of the domain, whose truth value may change over time. A

(fluent) literal is a fluent f or its negation ¬f . Additionally, we define the complement f = ¬f and

¬f = f . A single elementary event is denoted by its element e of E . A compound event is a set of

elementary events ε = {e1, . . . , en}. A state σ is a set of literals, the properties of which we present

later in this discussion. If f ∈ σ, we say that f holds in σ. A signature is a tuple Φ = 〈F , E〉, whose

components are defined above. Given a signature, the laws of AL are as follows. A statement of

1For convenience and compatibility with the terminology from RAC, in this paper we use action and event as synonyms.

CHAPTER 2: BACKGROUND 2.2 REASONING ABOUT ACTIONS AND CHANGE

8

the form

d : e causes l0 if l1, . . . , ln (2.1)

is called a dynamic (causal) law, where d is a constant used to name the law. Intuitively, a law d of

form (2.1) says that if elementary event e occurs in a state where literals l1, . . . , ln hold, then literal

l0 will hold in the next state. Note that the name of the law is not used to define the semantics of the

language, and will thus be omitted to simplify the presentation when possible2. Next, a statement

s : l0 if l1, . . . , ln (2.2)

is called a state constraint, where s is the name of the law, and says that in any state in which

literals l1, . . . , ln hold, l0 also holds. We say that l0 is the consequence of the law s and we often

refer to the consequence of a state constraint s as consq(s). It will be useful later to refer to the

set of literals {l1, . . . , ln} as prec(s). A statement of form (2.2) allows for an elegant and concise

representation of indirect effects, or ramifications, of events which enhances the expressive power of

the language. Finally, a statement of the form

ι : e impossible if l1, . . . , ln (2.3)

is called an executability condition, where ι is the name of the law, and states that an elementary

event e cannot occur when l1, . . . , ln hold. A set of statements of AL is called an action description.

2.2.2 Semantics of AL

A set S of literals is closed under a state constraint (2.2) if {l1, . . . , ln} 6⊆ S or l0 ∈ S. Set S is consistent

if, for every f ∈ F , at most one of {f,¬f} is in S. It is complete if at least one of {f,¬f} is in S. A

state σ of an action description AD is a complete and consistent set of fluent literals closed under

the state constraints of AD.
2In the chapter on the encoding of AL to ASP, we will assume that a name has been specified for each law.

CHAPTER 2: BACKGROUND 2.2 REASONING ABOUT ACTIONS AND CHANGE

9

Given an elementary event e and a state σ, the set of (direct) effects of e in σ, denoted by E(e, σ),

is the set that contains a literal l0 for every dynamic law (2.1) such that {l1, . . . , ln} ⊆ σ. Given a

compound event ε = {e1, . . . , en}, the set of direct effects of ε in σ is denoted byE(ε, σ) = E(e1, σ)∪

. . .∪E(en, σ). Given a set S of literals and a set Z of state constraints, the set CnZ(S) of consequences

of S under Z is the smallest set of literals that contains S and is closed under every state constraint

in Z. Finally, an event e is non-executable in a state σ if there exists an executability condition (2.3)

such that {l1, . . . , ln} ⊆ σ. Otherwise, the event is executable3 in σ.

The semantics of an AL action description AD is defined by its transition diagram τ(AD), a

directed graph 〈N,A〉 such that N is the collection of all states of AD, A is the set of all triples

〈σ, ε, σ′〉 where σ, σ′ are states, ε is an event executable in σ, and σ′ satisfies the successor state

equation:

σ′ = CnZ(E(ε, σ) ∪ (σ ∩ σ′)) (2.4)

where Z is the set of all state constraints of AD. The argument of CnZ in (2.4) is the union of the

set of direct effects E(e, σ) for all e ∈ ε with the set σ ∩ σ′ of the literals preserved by inertia. The

application of CnZ adds the indirect effects to this union. A triple 〈σ, ε, σ′〉 ∈ E is called a transition

of τ(AD) and σ′ is a successor state of σ (under ε). A sequence 〈σ1, ε1, σ2, . . . , εk, σk+1〉 is a path of

τ(AD) of length k if every 〈σi, εi, σi+1〉, 1 ≤ i ≤ k, is a transition in τ(AD). We denote the initial

state of a path ρ by σ1. We say that states σi and σi′ are sequential if i′ = i+ 1.

An action description AD has emergent non-deterministic behavior if, for some ε and σ there exist

multiple σ′ such that (2.4) is satisfied[36]. In this dissertation, we focus on action descriptions

without emergent non-deterministic behavior4.

The definition of τ(AD) is based upon [37] and is the product of an intensive investigation into

the nature of causality (see also [34, 38]). Arriving at this definition required a deep understanding

of the nature of causal effects of actions in the presence of complex interrelations between fluents.

An additional level of complexity is introduced by the need to specify what is not changed by

3Note that an event may occur without having an effect on the state of the world, commonly referred to in the literature
as a NOP action.

4Action description {q if ¬r, p; r if ¬q, p; a causes p} has an emergent non-deterministic behavior.

CHAPTER 2: BACKGROUND 2.2 REASONING ABOUT ACTIONS AND CHANGE

10

actions, a well-known challenge in AI called the frame problem. The challenge is often reduced to the

problem of finding a concise and accurate representation of the inertia axiom – a default which says

that things normally stay as they are [39]. The search for such a representation substantially influenced

AI research during the last twenty years. An interesting account of history of this research together

with some possible solutions can be found in [40].

2.3 Answer Set Programming

Answer Set Programming [41, 42] is a form of declarative programming that is useful in knowledge

intensive applications. In the ASP methodology, problem-solving tasks are reduced to computing

answer sets of suitable logic programs. As demonstrated by a substantial body of literature (see, e.g.,

[43] for the most closely related of these works), AL lends itself quite naturally to an automated

translation to Answer Set Programming [41, 42], using which, reasoning tasks of considerable com-

plexity can be specified and executed (see, e.g., [44–46]). As such, ASP is well suited to the task

of computing actual causes and is our choice of language for the implementation of the AL frame-

work presented in Chapter (Framework).

2.3.1 Syntax of ASP

The syntax of ASP is determined by a signature Σ consisting of types, typed object constants, as

well as typed function and predicate constants. We will assume that the signature contains symbols

for integers and for the standard relations of arithmetic. Terms are built as in typed first-order

languages.

Atoms are expressions of the form p(t1, . . . , tn), where p is a predicate symbol of arity n and

t’s are terms of suitable types. Literals are atoms or negated atoms of the form ¬p(t1, . . . , tn). The

symbol ¬ is called classical or strong negation. In our further discussion we often write p(t1, . . . , tn)

as p(t). Literals of the form p(t) and ¬p(t) are called complementary. By l we denote a literal

complementary to l. Literals and terms not containing variables are called ground.

For convenient representation of cardinality, we additionally use aggregate literals from ASP-

CHAPTER 2: BACKGROUND 2.3 ANSWER SET PROGRAMMING

11

Core-2 [47]. The syntax of an aggregate element are as follows

t1, . . . , tm : l1, . . . , ln

where t1, . . . , tm are terms l1, . . . , ln are literals of form l or not l for m ≥ 0 and n ≥ 0. An aggregate

atom has the form:

#count{e1; . . . ; en} = u

where e1; . . . ; en are aggregate elements for n ≥ 0 and #count is an aggregate function name5. Given

an aggregate atom a, the expressions a and not a are aggregate literals.

A rule in ASP is a statement of the form:

h← l1, . . . , lm, not lm+1, . . . , not ln (2.5)

where n ≥ 1, h (the head) and li’s (the body) are literals and aggregate literals, and not is the so-

called default negation. Intuitively, the meaning of default negation is the following: “if you believe

{l1, . . . , lm} and have no reason to believe {lm+1, . . . , ln}, then you must believe h”. For a given

rule r, we refer to the head h as head(r), the set {l1, . . . , lm} as pos(r), and the set {l1, . . . , lm}

as neg(r). An ASP rule with an empty body is called a fact. In writing facts, the ← connective

is dropped. Rules of the form ⊥ ← l1, . . . ,not ln are abbreviated ← l1, . . . ,not ln, and called

constraints, intuitively meaning that {l1, . . . ,not ln} must not be satisfied. A rule with variables

(denoted by an uppercase initial) is interpreted as a shorthand for the set of rules obtained by

replacing the variables with all possible variable-free terms.

A pair 〈Σ,Π〉where Σ is a signature and Π is a collection of rules over Σ is called a logic program,

or simply program. We often denote such a pair by its second element Π, and the corresponding

signature is in turn denoted by Σ(Π). The sets of all ground terms, atoms, and literals over Σ are

5See [47] for a full listing of aggregate function names and their semantics.

CHAPTER 2: BACKGROUND 2.3 ANSWER SET PROGRAMMING

12

denoted by terms(Σ), atoms(Σ), and lit(Σ), respectively. Consistent sets of ground literals over

signature Σ, containing all arithmetic literals which are true under the standard interpretation of

their symbols, are called states of Σ and are denoted by states(Σ).We say that a literal l ∈ lit(Σ)

is true in a state X of Σ if l ∈ X and that l is false in X if l ∈ X . The satisfaction of a aggregate

literal is based on the evaluation of the literal w.r.t the literal’s aggregate function. The approach

is described in [47], and we present the semantics of the aggregate function #count in the next

section.

Grounding a program Π refers to applying to each rule r ∈ Π all possible substitutions from the

variables in r to the set of constants in of signature Σ. For grounding to be possible, all rules of the

program should be safe, that is to say that all variables that appear in a rule r must be a member

of pos(r). Rules that do not satisfy this condition are unsafe. The satisfaction of aggregate literals is

determined by this mapping and is described in detail in[47]. A ground instantiation of a program

Π is denoted by ground(Π). The terms, atoms, and literals of a program Π are denoted respectively

by terms(Π), atoms(Π), and literals(Π).

2.3.2 Semantics of ASP

The answer set semantics of a logic program Π assigns Π to a collection of answer sets– consistent

sets of ground literals over signature Σ(Π). Answer sets correspond to beliefs which can be built by

a rational reasoner on the basis of the rules of Π. In the construction of these beliefs, the reasoner

aims to satisfy the rules of Π, understood as constraints of the form “if you believe in the body of

the rule, you must also believe in the head”. Finally, they should adhere to the rationality principle

which says that one shall not believe anything they are not forced to believe.

An aggregate function is a mapping from sets of tuples of terms to terms. The aggregate function

associated with the #count function name maps a set T of tuples of ground terms to a ground term

as follows:

#count(T) = |T | (2.6)

CHAPTER 2: BACKGROUND 2.3 ANSWER SET PROGRAMMING

13

Answer sets are defined for programs whose rules do not contain default negation, also referred

to as not-free programs. Let Π be a not-free program and let X be a consistent set of literals. We say

that X is closed under Π if for every rule head← body of Π, head is true in X whenever body is true

in X . For a constraint, this condition means that body is not contained in X .

Definition 1. (Answer set of a not-free program). A consistent set of literals, X , is an answer set of a

program Π not containing default negation if X is closed under all rules of Π and X is set-theoretically

minimal among the sets satisfying the first property.

It can be shown that a program without default negation can have at most one answer set. Ex-

tending the definition to an arbitrary program Π (which may contain default negation), computing

the answer sets of Π is reduced to the computation of answer sets of programs without default

negation. We say that the reduct ΠX of Π relative to X is the set of rules l0 ← l1, . . . , lm for all rules

of form (2.5) in Π such that lm+1, . . . , ln 6∈ X . Formally,

Definition 2. (Reduct of an arbitrary program). Let Π be an ASP program. For any set X of literals, let

ΠX be the program obtained from Π by removing:

• each rule r ∈ Π such that neg(r) ∩X 6= ∅

• all expressions of the form not l in the bodies of the remaining rules.

It is easy to see that ΠX is a not-free program. We can now define the notion of answer set of an

arbitrary program.

Definition 3. (Answer set of a basic ASP program). A consistent set of literals, X , is an answer set of a

basic ASP program Π if it is an answer set of ΠX .

2.3.3 Properties of Answer Sets

The following properties of answer sets will be useful in Chapter 5.

Proposition 1. (Supportedness.) Given an answer set X of Π, for every literal a ∈ X there is some rule r

from ground(Π) whose body is satisfied in X and whose head contains a.

CHAPTER 2: BACKGROUND 2.3 ANSWER SET PROGRAMMING

14

It is easy to see that this is trivially true for facts of X . A related property of answer sets is that

of closedness, which guarantees that whenever the body of a rule r is satisfied in X , then the head of

r is a member of A. With the background of the work established, we proceed to the presentation

of the main contribution of the dissertation.

CHAPTER 2: BACKGROUND 2.3 ANSWER SET PROGRAMMING

15

Chapter 3: Theoretical Framework

In this section, we present the causal reasoning framework alongside a novel example that show-

cases the ability of the framework to reason about the direct and indirect causal influence of events

over literals, originally presented in [48]. We will then present and discuss two counterexamples

to our original definition of indirect cause. Following that, we will present an improved definition

and show that it is able to solve the counterexamples. Finally, we will discuss some technical and

conceptual advantages of the improved definition of indirect cause over the original definition.

Given a consistent set of literals θ representing an outcome of interest, an action description AD

describing the effects of events in a dynamic domain, and a path ρ in τ(AD) corresponding to a

scenario of interest, we construct a problem ψ = 〈θ, ρ,AD〉. The framework can be used to reason

over the elements of a problem ψ to identify events that are responsible for causing the literals of θ

to hold simultaneously in a state of ρ. We now present the details of the running example.

3.1 Running Example

Let ψE = 〈θE , ρE , ADE〉 be a problem representing the running example. The outcome of interest

in our example is θE = {A,B,C,D,E, F}. The following action description ADE characterizes

elementary events in the example domain:

e1 causes A if ¬A

e2 causes A if ¬A

e3 causes C if ¬C

e4 causes E if ¬E

e5 causes F if ¬F

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)

16

e5 causes C if ¬C

B if C

D if E,F

(3.6)

(3.7)

(3.8)

The dynamic law (3.1) states that e1 will cause A to hold if it does not already hold when the

event occurs. Similarly, laws (3.2) through (3.6) describe the direct effects of events e2, e3, e4, and

e5. The state constraint (3.7) tells us that B holds whenever C holds, and the state constraint (3.8)

tells us that D holds whenever both E and F hold. Note that although there are no executability

conditions in this action description, it is straightforward to use them to model the events in ADE

in greater detail.

Table 3.1: Tabular representation of path ρE ∈ τ(ADE).

State Event
σ1 = {¬A,¬B,¬C,¬D,¬E,¬F} ε1 = {e1, e2}
σ2 = {A,¬B,¬C,¬D,¬E,¬F} ε2 = {e3}
σ3 = {A,B,C,¬D,¬E,¬F} ε3 = {e4, e5}
σ4 = {A, B, C, D, E, F} –

The dynamics of the scenario are given by path ρ ∈ τ(ADE). Path ρ consists of three compound

events, ε1 = {e1, e2}, ε2 = {e3}, and ε3 = {e4, e5}. Table 3.1 shows the evolution of state in ρE in

response to these events. The first column lists each state of ρE , and the second column gives the

event αi that caused a transition to the subsequent state. The outcome θE is not satisfied in the

first three states of the path, however, the events of ρE have somehow caused the outcome to be

satisfied in state σ4.

By examining the laws of ADE together with the states and transitions of ρE , the reader can

reason about which event(s) directly and (or) indirectly caused every literal in θE to hold by state

σ4. In the first transition, for instance, we see that events e1 and e2 overdetermining direct causes of

A holding in state σ2 according to laws (3.1) and (3.2), respectively. Next, event e3 directly causes

C to hold in state σ3 according to law (3.3). In the same transition, e3 indirectly causes B because

of laws (3.3) and (3.7). Here, the direct effect of e3 occurring in σ2 was needed to satisfy the state

CHAPTER 3: THEORETICAL FRAMEWORK 3.1 RUNNING EXAMPLE

17

Table 3.2: Explanation of how each literal of θE was caused in path ρE .

Literal Compound Event Direct Cause Indirect Cause Laws

A ε1 = {e1, e2}
e1 – (3.1)
e2 – (3.2)

B
ε2 = {e3}

– e3 (3.3),(3.7)
C e3 – (3.3)
D

ε3 = {e4, e5}
– e4, e5 (3.4),(3.5),(3.8)

E e4 – (3.4)
F e5 – (3.5)

constraint (3.7), which in turn caused B to hold. In the final transition, e4 and e5 directly cause E

and F , respectively, as per (3.4) and (3.5). Finally, the co-occurrence of e4 and e5 in this transition

indirectly causes D in accordance with laws (3.4), (3.5), and (3.8). This is a case of contributory

cause in which the direct effects of e4 an e5 were both required to satisfy the preconditions of the

state constraint (3.8), which results in D holding in state σ4. Moreover, notice that if e3 had not

occurred in σ2, then e5 would have caused C to hold by law (3.6). However, we do not identify e5

as a cause because it was preempted by e3.

Table 3.2 summarizes the results of our reasoning over the problem. Each row of the table (or

sets of rows in cases of overdetermination) characterizes the causation of each literal l ∈ θE by

row. The first column lists the literal l in θE that is being explained. The second, third, and fourth

columns tell us which event(s) caused l to hold, either directly or indirectly. As a reference for the

reader, the final column specifies the laws of ADE that are relevant to the causation of each l.

In this example, we needed only to reason over the laws of ADE and the path ρE , to produce

a fine-grained causal explanation about the direct and indirect causation of the literals of θE . We

were also able to accurately identify causation in cases of overdetermination, contributory cause,

and preemption. The goal of the theoretical framework is to mathematically characterize the type

of reasoning process that we used to mentally solve this running example.

CHAPTER 3: THEORETICAL FRAMEWORK 3.1 RUNNING EXAMPLE

18

3.2 Framework Definitions

Here we present the definitions of the framework, and use them to characterize direct and indirect

causation of every literal in θE in path ρE for our example, as in Table 3.2.

3.2.1 Transition States and Causing Compound Events

The first step in explaining how an outcome θ came to be in path ρ is to identify a transition state of

the outcome in ρ. A transition state tells us when the outcome of interest appears in the path.

Definition 4. Given a problem ψ = 〈θ, ρ, AD〉, a state σj in ρ is a transition state of θ if θ 6⊆ σj−1 and

θ ⊆ σj .

The state σj is a transition state of θ if the outcome is satisfied in σj but not in the immediately

previous state σj−1. It is easy to see that if 4 is satisfied for some σj in ρ, then by the successor state

equation 2.4 it must be the case that one or more elementary events in εj−1 has caused at least one

of θ’s literals to hold by σj . Note that there may be multiple transition states for an outcome θ in a

given path ρ.

In our running example, σ4 is the only transition state of θE because it is only state of ρE in

which the literals A, B, C, D, E and F hold simultaneously. It is easy to verify that θE 6⊆ σ3 and

θE ⊆ σ4 in ρE using Table 3.1.

Given a transition state σj and a literal l in outcome θ, we can identify the most recent compound

event to σj in ρ to result in l. In other words, we want to find a causing compound event εi that resulted

in the most recent transition state of the singleton {l}with respect to θ’s transition state σj . We first

provide a preliminary definition for a possibly causing compound event.

Definition 5. Given a problem ψ = 〈θ, ρ, AD〉, a transition state σj of θ in ρ, and a literal l ∈ θ, εi is a

possibly causing compound event of l for σj if the state σi+1 in ρ is a transition state of {l} in ρ and

i < j.

Now we may define causing compound events.

CHAPTER 3: THEORETICAL FRAMEWORK 3.2 FRAMEWORK DEFINITIONS

19

Definition 6. Given a problem ψ = 〈θ, ρ, AD〉, a transition state σj of θ in ρ, a literal l ∈ θ, and a possibly

causing compound event εi of l for σj , εi is a causing compound event of l for σj if there is no other

possibly causing compound event εi′ for l in σj such that i < i′.

It is easy to see that if there is no causing compound event of l ∈ θ for a transition state σj , then

l must have held in the initial state of ρ and was never changed by a subsequent event prior to σj .

It is straightforward to verify using Table 3.1 that ε1 is a causing compound event of A, ε2 is a

causing compound event of B and C, and ε3 is a causing compound event of D, E, and F . In all

cases, Definition 6 is satisfied because σ2 is a transition state ofA, σ3 is a transition state ofB and C,

and σ4 is a transition state of D, E, and F and there are no other transition states for any literal in

l ∈ θE . Therefore, there cannot be a more recent causing compound event of for any such l holding

in transition state σ4 of θE .

3.2.2 Direct Cause

Once we know that εi is a causing compound event for l in σi, we can “look inside” of εi to identify

direct and/or indirect causes of l.

Definition 7. Given a problem ψ = 〈θ, ρ, AD〉, a transition state σj of θ in ρ, a literal l ∈ θ, and a causing

compound event εi of l, the elementary event e ∈ εi is a direct cause of l for σj if l ∈ E(e, σi).

If l is in the set of direct effects of e occurring in state σj , then e’s occurrence was sufficient to

directly cause l. Note that direct cause is defined in such a way that multiple events can be direct

causes simultaneously as long as l is in the corresponding sets of direct effects. For example, we

already know that ε1 is a causing compound event of A holding in σ4 in the example. Definition

7 tells us that e1 ∈ ε1 is a direct cause of A for σj . This is because A is in the set E(e1, σ1) due to

the dynamic law (3.1) of ADE . It can be similarly verified that e2 ∈ ε1 is also a direct cause of A

because the literal is in E(e2, σ1). We can also verify that e3 ∈ ε2 is an direct cause of C, and finally

e4 ∈ ε3 and e5 ∈ ε3 are direct causes of E and F , respectively.

CHAPTER 3: THEORETICAL FRAMEWORK 3.2 FRAMEWORK DEFINITIONS

20

3.2.3 Simple Notion of Indirect Cause

In [48], an indirect cause of a literal l is a subset of elementary events in ε ⊆ εi that have indirectly

caused the literal 1.

Definition 8. Given a problem ψ = 〈θ, ρ,AD〉, a transition state σj of θ in ρ, a literal l ∈ σj , and a causing

compound event εi of l, the compound event ε ⊆ εi is an indirect cause of l for σj if it is a smallest subset of

εi such that the following conditions are satisfied:

1. l 6∈ E(ε, σi)

2. There exists a transition t = 〈σi, ε, σ′i+1〉 in τ(AD) such that σ′i+1 is a transition state of {l} in t

Note that condition 1 requires that l is not a direct effect of ε. Condition 2 checks that if ε were

to hypothetically occur by itself in state σi, then l would hold in the resulting state. Finally, we

require that ε is a smallest subset of εi because we want to rule out any subsets including extraneous

elementary events. For example, if ε contains three events and only two are capable of causing l,

then there would certainly be a transition t = 〈σi, ε, σ′i+1〉 as required by condition 2, but we want

ε to contain only event(s) that have indirectly caused l.

In our example, {e3} ⊆ ε2 is an indirect cause of B for σ4 because ε2 is a causing compound

event of B and 〈σ2, B is not in the set E({e3}, σ2), and finally 〈{e3}, σ′〉 is a valid transition where

σ′ is a transition state of {B} as per laws (3.3) and (3.7). It can be similarly verified that {e4, e5} is

an indirect cause of D for σ4.

Problems with the Hypothetical Reasoning Approach

Although we have found that Definition 8 can be used to solve some traditionally challenging

examples from the literature [48], the following counterexample points out a fundamental problem

with the approach to verifying indirect cause using Definition 8. Consider the following action

1In AL, it is possible that a set of literals must hold simultaneously in order for l to be caused (e.g. see Law (3.8) in ADE).

CHAPTER 3: THEORETICAL FRAMEWORK 3.2 FRAMEWORK DEFINITIONS

21

description:

e1 causes d1 (3.9)

e2 causes d2 (3.10)

l if d1 (3.11)

l if d2,¬d1 (3.12)

Consider now a path ρ with a single transition 〈σ, ε, σ′〉 in which ¬d1, ¬d2, and ¬l hold in the

initial state, and ε = {e1, e2}. The occurrence of ε causes d1, d2, and l to hold in σ′. It is straight-

forward to verify that that e1 is a direct cause of d1 in σ′ as per law (3.9), and similarly that e2 is a

direct cause of d2 via law (3.10). Using Definition 8, we find that {e1} and {e2} are overdetermining

indirect causes of l for σ1. In the case of {e1}, this is intuitive because d1 was caused to hold by e1

and l is a ramification of this event by law (3.9). However, identifying {e2} as an indirect cause is

not in line with intuition because d1 holds in σ′ in the actual scenario, so {e2} does not appear to

have had influence on l. Indeed, if e2 were to occur by itself in σ, it would indirectly cause l to hold

because the preconditions of law (3.12) would be satisfied, but e1’s membership in ε caused d1 to

hold in σ′ and so (3.12) does not actually “apply” in σ′. This leads us to the conclusion that Def-

inition 8 incorrectly identifies events as indirect causes when the preemption of the events effects

occurs over a single transition. We refer to such a case as single-transition preemption.

An additional problem identified by our analysis of Definition 8 is the condition that ε be the

smallest subset of εi satisfying conditions 1 and 2. Consider the following action description:

e1 causes d1 (3.13)

e1 causes d2 (3.14)

e2 causes d3 (3.15)

l if d1 (3.16)

l if d2, d3 (3.17)

CHAPTER 3: THEORETICAL FRAMEWORK 3.2 FRAMEWORK DEFINITIONS

22

Consider now a path ρ with a single transition 〈σ, ε, σ′〉 in which ¬d1 and ¬d2 hold in the initial

state, and ε = {e1, e2}. The occurrence of ε causes d1 and d2 to hold in σ′. It is straightforward to

verify that that e1 is a direct cause of d1 in σ′ as per law (3.9), and similarly that e2 is a direct cause

of d2 via law (3.10). In this case, Definition 8 would identify {e1} as an indirect cause, but would

miss the intuitive answer that {e1, e2} is an overdetermining indirect cause with {e1} due to rules

(3.14), (3.15), and (3.17). We can conclude that the smallest subset condition is too restrictive and

causes the definition to miss intuitive cases of indirect causation. We refer to such a case as larger

subset overdetermination.

In addition to producing non-intuitive results in these cases, these examples bring to light the

fact that the hypothetical reasoning step is not philosophically in line with reasoning about what

actually happened. Therefore, we have developed a new definition of indirect cause that links the

direct effects of events to the indirect causation of a literal l via the state constraints of the action

description.

3.2.4 Improved Definition of Indirect Cause

The improved definition of indirect cause requires some preliminary notions. First, a link γ is a set of

state constraints. The set of all consequences in γ is denoted byC(γ) and the set of all preconditions

is P (γ). The set of all consequences of a set of links is denoted by C({γ1, . . . , γn}) = C(γ1) ∪ . . . ∪

C(γk). Similarly, the set of all preconditions of a set of links is P ({γ1, . . . , γn}) = P (γ1)∪ . . .∪P (γk).

Given a transition t = 〈σi, εi, σi′〉, the set of preserved preconditions of a state constraint s for

σ′i is given by I(s, σi) = (σi′ ∩ σi) ∩ prec(s). In other words, these are the preconditions of state

constraint s that were preserved by inertia in the transition, rather than being caused as a direct

effect or ramification of εi. The set of s’s directly caused preconditions by ε ⊆ εi for σi is the set

M(s, ε, σ′i) = E(ε, σi) ∩ prec(s) \ σi. This condition reflects our position that a literal l that was

preserved by inertia from σi to σ′i should not be considered to have been caused by any subset of εi

even if l is in the set of direct effects E(εi, σi).

A static chain is a sequence of links that connects the direct effects of one or more elementary

events in a causing compound event εi of l to the indirect causation of l in transition state σ′i of {l}

CHAPTER 3: THEORETICAL FRAMEWORK 3.2 FRAMEWORK DEFINITIONS

23

by way of the state constraints of AD.

Definition 9. Given a problem ψ = 〈θ, ρ, AD〉, a compound event ε ⊆ εi in ρ, sequential states σi and σi′

in ρ, and a literal l ∈ σi′ , a static chain χ(ε, l, σi′) = 〈γ1, . . . , γn〉 is a sequence of non-empty links where

l is only in the consequences of the final link γn, and such that the links of χ(ε, l, σi′) satisfy the following

conditions:

1. γ1 is the set of all state constraints s such that prec(s) ⊆ σi′ , and there exists a non-empty set

M ⊆M(s, ε, σi′) such that prec(s) = M ∪ I(s, σi′).

2. if l 6∈ C(γg−1) for every 1 < g ≤ n, γg is the set of state constraints s such that:

(a) prec(s) ⊆ σi′ , and

(b) prec(s) = C(γg−1) ∪ C({γ1, . . . , γg−2}) ∪M ′ ∪ I(s, σi′),

where C(γg−1) is a non-empty set and M ′ ⊆M(s, ε, σi′).

Condition 1 states that the first link of a causal chain contains only those state constraints whose

preconditions became satisfied as a result of the direct effects of ε. Condition 2 says that any state

constraint in link γg must be “connected” to the immediately previous link γg−1 by at least one

member of γg−1’s consequences. Moreover, l may not have already been caused as a consequence

of γg−1. This requirement along with the requirement that l is only a consequence of the final link

γn allows us to define when a static chain “terminates”.

We can identify a number of interesting properties for static chains.

Proposition 2. Given a problem ψ = 〈θ, ρ, AD〉, a compound event εi, a literal l ∈ θ, and sequential states

σi and σi′ , there is exactly one static chain χ(ε, l, σi′) for a compound event ε ∈ εi.

This can be easily verified by considering the fact there are no non-deterministic effects of ac-

tions in AL, and therefore the direct effects of ε can be linked to l in exactly one way. Therefore,

when we identify a static chain χ(ε, l, σi′), we can be assured that there are no additional chains

χ′(ε, l, σi′) that would explain the indirect causation of l in σi′ . Another interesting property is that

a static chain contains at least one link. Formally,

CHAPTER 3: THEORETICAL FRAMEWORK 3.2 FRAMEWORK DEFINITIONS

24

Proposition 3. Given a problem ψ = 〈θ, ρ,AD〉, a compound event εi in ρ, a literal l ∈ θ, and a static

chain χ(ε, l, σ′i) = 〈γ1, . . . , γn〉 for some ε ∈ εi, n ≥ 1.

It is clear from the definition of a static chain that χ(ε, l, σ′i) has at least one link. Finally, it can be

verified that the length of a static chain is finite when the number of state constraints in the action

description is finite. Formally,

Proposition 4. Given a problem ψ = 〈θ, ρ, AD〉, a compound event εi in ρ, a literal l ∈ θ, and a static chain

χ(ε, l, σ′i) = 〈γ1, . . . , γn〉 for some ε ∈ εi, the maximum length of χ(ε, l, σ′i) is equivalent to the number of

state constraints in AD.

The following proposition will be useful in our proof of correctness of the implementation in

Chapter 5.

Proposition 5. Given a static chain χ(ε, l, σi) = 〈γ1, . . . , γn〉 and a state constraint s:

• if s ∈ γ1, then |prec(s)| = |M |+ |(s, σi′)|

• if s ∈ γg , g < 1 ≤ n, andC({γ1, . . . , γg−2})∩C(γg−1) = ∅, then |prec(s)| = |C({γ1, . . . , γg−2})|+

|γg−1|+ |M ′|+ |I(s, σi′)|

Now we may leverage the definition of static chain to identify when a proper subset ε ⊆ εi is an

indirect cause of l for state σ′i.

Definition 10. Given a problem ψ = 〈θ, ρ,AD〉, a literal l ∈ θ, a transition state σj of θ in ρ, sequential

states σi and σi′ in ρ, and a causing compound event εi of l for σj , ε ⊆ εi is an indirect cause of l in σj if

the following conditions hold:

1. There exists a static chain χ(ε, l, σi′) = 〈γ1, . . . , γn〉.

2. There exists no event in e ⊆ ε such that E(e, σi) ∩ P ({γ1, . . . , γn}) = ∅ for χ(ε, l, σi′).

Condition 1 requires that there is a static chain linking the direct effects of ε to l in σi by way of

the state constraints of AD. Condition 2 states that there is no elementary event in ε′ whose direct

effects do not contribute to the satisfaction of any state constraint in any γi of the static chain under

CHAPTER 3: THEORETICAL FRAMEWORK 3.2 FRAMEWORK DEFINITIONS

25

consideration. This allows us to exclude extraneous events from our definition of indirect cause.

Note that it is impossible for an empty set to be an indirect cause of l in σi due to Condition 1 of the

definition of a static chain stating that M is a non-empty set.

Now, we will return to the running example and use Definitions 9 and 10 to once again identify

{e3} as an indirect cause of B and {e4, e5} as an indirect cause of D. First, there exists a static

chain χ({e3}, B, σ3) = 〈γ1〉 linking the direct effects of {e3} to B for state σ3. Let s represent law

(3.7). In this case condition 1 of Definition 9 is satisfied for s because prec(s) ⊆ σ3 and prec(s) =

M(s, {e3}, σ3)∪I(s, σ3) whereM(s, {e3}, σ3) = {C} by law (3.3) and I(s, σ3) = ∅. Therefore, s ∈ γ1.

Because s ∈ γ1 and consq(s) = B, the literal B is clearly in C(γ1). By condition 2, there can be no

link beyond γ1 and Definition 9 is satisfied. Finally, because there are no extraneous events in {e3},

this event is an indirect cause of B for σ4 by condition 2 of Definition 10. It can be similarly verified

that there is a chain χ({e4, e5}, B, σ3) = 〈γ1〉 where γ1 contains state constraint (3.8), and moreover

that {e4, e5} is an indirect cause of D for σ4 because there are no extraneous events in {e4, e5} as

per laws (3.4), (3.5), and (3.8).

Single-Transition Preemption Revisited

Consider again the first counterexample to Definition 8 from Section 3.2.3. In this case, we previ-

ously incorrectly identified e2 as an indirect cause of l. Let s represent law (3.11). Using Definition

9 for static chains, it can be verified that there is a static chain χ({e1}, l, σ′) = 〈γ1〉 such that s ∈ γ1.

Here, s satisfies condition 1 of Definition 9 because its only precondition d1 holds in σ′ and d1 is

also a direct effect of {e1}. The definition of static chain is satisfied because l is a member of the set

of consequences of γ1. Because there is clearly no extraneous event in {e1}, {e1} is an indirect cause

of l for σ′. There is no chain χ({e2}, l, σ′) because the direct effect d2 of e2 in σ1 is not a precondition

of any law whose full set of preconditions hold in σ2. Therefore {e2} is not an indirect cause of l for

σ′.

CHAPTER 3: THEORETICAL FRAMEWORK 3.2 FRAMEWORK DEFINITIONS

26

Larger Subset Overdetermination Revisited

Consider now the second counterexample to Definition 8 from Section 3.2.3. Here, we previously

missed an intuitive indirect cause due to the smallest subset requirement of the original definition

of indirect cause. Using Definition 9, it is straightforward to verify that there are static chains

linking both {e1} and {e1, e2} to d1 in σ′. Let s represent the state constraint (3.16). Static chain

χ({e1}, d1, σ′) contains a link γ1 = {s} because s’s precondition d1 holds in σ′ and is a direct effect

of e1 occurring in σ1. Now let s′ represent law 3.17. The static chain χ({e1, e2}, d1, σ′) contains a

link γ1 = {s} because the set of preconditions prec(s′) ∈ σ′ and both literals were caused directly

by {e1, e2} (i.e., d2 ∈ E(e1, σ) and d3 ∈ E(e2, σ)). It is easy to see that there are no extraneous events

in either chain, and so {e1} and {e1, e2} are overdermining indirect causes of l for σ′.

3.3 Discussion

There are several technical and conceptual advantages of the improved definition of indirect cause

over the original. The most attractive advantage is the information contained in static chains. Not

only is a static chain a useful tool for identifying when a literal has been caused as a ramification

of a compound event, but the chain itself also tells the story of exactly how the literal is linked to

the direct effects of the event. This puts us at a clear explanatory advantage over approaches that

define actual causation in terms of dependence because even if they reach the same conclusions as

us about the cause of some outcome of interest, they are unable to explain how the outcome was

influenced – only that it was influenced.

Another advantage of Definition 10 is that we have been able to lift the restriction enforced by

condition 1 of Definition 8 that an event cannot be both a direct and indirect cause. It is easy to

imagine a situation in which this is possible, for example:

e1 causes d1 (3.18)

e1 causes d2 (3.19)

d1 if d2 (3.20)

CHAPTER 3: THEORETICAL FRAMEWORK 3.3 DISCUSSION

27

Consider that ¬d1 and ¬d2 both hold in σi and that εi = {e1}. In this case, d1 is a direct effect of

e1 because d1 ∈ E(e1, σi) as per law (3.18). However, the subset {e1} is also an indirect cause of d1.

Due to law (3.19), there is a static chain χ({e1}, d1, σ′) = 〈γ1〉 such that the state constraint (3.20) is

the only member of γ1, and there are no extraneous events in χ({e1}, d1, σ′). Because there are no

extraneous events, {e1} is an indirect cause of d1 for σ′. The original definition can only be used to

identify e1 as a direct cause of d1, and will miss its indirect causation of d1.

Definition 10 also has an important conceptual advantage over the original, which is that it

requires reasoning strictly over what has actually happened, rather then checking to see if there is a

possible world in which ε can cause a literal to hold in some state σi′ . By only considering the state

constraints whose preconditions are satisfied in a state σi′ , we automatically rule out any events

whose effects were blocked in the transition, as earlier demonstrated.

There are a number of important insights about this approach to be gained from the presen-

tation. The first is that the representation of scenarios as the evolution of state using brings with

it natural solutions to situations that are traditionally challenging to counterfactual reasoning ap-

proaches, as we have shown. Another is that scenarios as paths are intuitive and iconic - that is to

say, paths more closely reflect how we mentally represent scenarios as events causing changes to to

the state of the world as opposed to a set or sequence of events. Finally, having the ability to reason

over the semantics ofAL, the elements of a path, and the causal knowledge contained in the action

descriptionAD frees us from reasoning about possible worlds by giving us the information we need

to reason about the actual world. We address these advantages in greater detail in Chapter 7.

In the next chapter, we test the framework on a number of examples from the literature, as well

as a novel example inspired by the self-driving car example introduced in Chapter 1.

CHAPTER 3: THEORETICAL FRAMEWORK 3.3 DISCUSSION

28

Chapter 4: Examples

In this chapter, we test the framework on a number of examples from the literature, as well as

a novel example concerning a crash scenario in the context of a self-driving car. By testing the

framework on the literature examples, we intend to demonstrate that our framework is able to

match or exceed the intuition gained using a counterfactual dependence as a condition for cause.

In proposing the self-driving car example, we aim to demonstrate, albeit at a high level, that it is

possible to reason about independently operating components in a theoretical distributed system.

4.1 Scenario Paths

We represent the elements of each example using an example tuple Ψ = 〈θ, v, AD〉, where θ is an

outcome of interest, v is a sequence of compound events representing the events of the example,

and AD is an action description of the example’s domain. In order to ensure that our approach

is starting with the same ingredients as other approaches to reasoning about actual cause (events

representing a scenario instead of a path), we define scenario paths to map the sequence of com-

pound events v to one or more paths of the transition diagram τ(AD). Scenario paths represent a

unique unfolding of a scenario’s events with respect to a given domain and provide a convenient

representation of how the domain changes over time in response to the events of the scenario. We

reason over these paths to explain actual causation.

Definition 11. Given an outcome θ, a sequence of events v = 〈ε1, . . . , εk〉, and an action description AD,

a scenario path is a path ρ = 〈σ1, ε1, σ2, ε2, . . . , εk, σk+1〉 in τ(AD) satisfying the following conditions:

1. θ 6= σ1

2. ∃i, 1 < i ≤ k + 1, θ ⊆ σi

Condition 1 requires that the set of fluent literals θ is not satisfied in the initial state of ρ, ensuring

that the outcome has not already been caused prior to the known events of the story. Condition 2

29

requires that θ is satisfied in at least one state after the initial state in ρ. Conditions 1 and 2 together

ensure that at least one event is responsible for causing θ to hold in ρ. The successor state equation

(2.4) tells us some event in the scenario path must have directly or indirectly caused θ to be satisfied

at some point after the initial state. The set of all scenario paths for an example tuple Ψ is given

by S(Ψ) = {ρ1, ρ2, . . . , ρm}. A problem ψ = 〈θ, ρ, AD〉 where ρ ∈ S(Ψ) allows us to inquire about

causal information for a specific path rather than for a sequence of events as in Ψ.

4.1.1 Rock Throwing Problem

First, we will explore two versions of the rock-throwing problem [49], demonstrating that our ap-

proach can identify causation in the original example of preemption, and a reformulation of the

problem exhibiting overdetermination [50].

Preemption

The original scenario posed in [49] is as follows:

Throwing a rock at a bottle will cause it to break. Suzy throws the rock at a bottle, and Billy

throws a second rock at the bottle. Suzy’s rock hits first and the bottle is broken. Who is to blame

for the bottle’s breaking?

Intuition tells us that Suzy is responsible for breaking the bottle. We can build upon this example

to say that Tommy handed Suzy the rock at the start of the scenario. We extend the scenario to

capture these dynamics as follows:

Handing a rock to Suzy causes it to be in her possession. Throwing a rock at a bottle will cause it

to break. Tommy hands a rock to Suzy, she throws the rock at a bottle, and Billy throws a second

rock at the bottle. Suzy’s rock hits first and the bottle is broken. Who is to blame for the bottle’s

breaking?

Mapping this example to a practical setting, say a vandalism trial, we would certainly want to

blame Suzy for succeeding in breaking the bottle, and possibly Tommy as well for his action of

CHAPTER 4: EXAMPLES 4.1 SCENARIO PATHS

30

 {handsRockTo(tommy,suzy)

𝜎1 𝜎2 𝜎3
{throws(billy)

𝜎3
{throws(suzy)

 hasRock(billy)

¬isBroken(bottle)

¬hasRock(suzy)

 hasRock(billy)

¬isBroken(bottle)

 hasRock(suzy)

hasRock(billy)

isBroken(bottle)

 hasRock(suzy)

hasRock(billy)

 isBroken(bottle)

 ¬hasRock(suzy)

Figure 4.1: Path ρB ∈ S(ΨB) is a representation of the bottle breaking scenario.

handing the rock to Suzy 1.

The elements of the problem are given by the example tuple ΨY = 〈θB , vB ,

ADB〉. In this example the outcome of interest is given by θB = {isBroken(bottle)}. The action

description ADB characterizes the events of the bottle breaking domain:

handsRockTo(tommy, suzy) causes hasRock(suzy)

throws(suzy) causes isBroken(bottle)

if ¬isBroken(bottle)

throws(billy) causes isBroken(bottle)

if ¬isBroken(bottle)

throws(suzy) causes ¬hasRock(suzy)

throws(suzy) impossible if ¬hasRock(suzy)

(4.1)

(4.2)

(4.3)

(4.4)

(4.5)

Law (4.1) tells us that if Tommy hands a rock to Suzy, then Suzy has the rock. Laws (4.2) and

(4.3) represent the knowledge that if someone throws a rock at a bottle, it will break. Law (4.4) tells

us that if Suzy throws the rock, then she no longer is in possession of the rock. Finally, Law (4.5)

states that it is impossible for Suzy to throw a rock if it is not in her possession. We assume that

there exists a corresponding law for Billy for each of (4.1), (4.4), and (4.5), however we omit them

for clarity of the presentation. Consider a path ρB ∈ S(ΨB) corresponding to the scenario’s events,

1The matter of Billy’s intention to commit the crime is a matter of judging levels of blame (see e.g. [51]), which is outside
of the scope of this work.

CHAPTER 4: EXAMPLES 4.1 SCENARIO PATHS

31

represented in Figure 4.1. In the initial state of ρB , Suzy does not have the rock and the bottle is

not broken. After the occurrence of ε1 = {handsRock(tommy, suzy)}, ε2 = {throws(suzy)}, and

ε3 = {throws(billy)}, the bottle is broken in state σ4. It is straightforward to verify for problem

ψB = 〈θB , ρB , ADB〉 that σ3 is the only transition state of θB in ρB and that ε2 is the causing

compound event isBroken(bottle) ∈ θB holding in σ3. The elementary event throws(suzy) is a

direct cause of isBroken(bottle) because it is in the set E(throws(suzy), σ1) as per rule (4.2).

There is more causal information to uncover in this problem. We already know that Suzy throw-

ing the rock at the bottle caused it to break, but we want to know if any events supported Suzy’s

ability to cause the outcome. Rule (4.1) inADB tells us that Suzy cannot throw the rock if it is not in

her possession. In this case, we can formulate a new problem ψ′Y = 〈hasRock(suzy), ρB , ADB〉 and

use the framework to determine that handsRock(tommy, suzy) directly caused hasRock(suzy). Ta-

ble 4.1 summarizes the causal explanations for each of the outcomes we considered. Each row of

the first column gives the outcomes of interest for the problems ψY and ψ′Y . The second column

identifies the transition state for each outcome in ρB . The third column gives the direct causes for

both problems. It is easy to see that there are no indirect causes for this example.

We have shown that modeling the scenario as a sequence of events occurring over time enables

the framework to correctly identify the intuitive cause of the bottle breaking in a classic example

of preemption from the literature. We have also shown that it is straightforward to reformulate the

problem with a new outcome in order to learn more about the causal mechanism at will.

Overdetermination

The scenario can be modified so that Suzy and Billy throw their rocks at the same time, both hitting

the bottle simultaneously, upon which it shatters as in [50]. Either rock by itself would have sufficed

to shatter the bottle, so we want to identify both throws as direct causes. Omitting the extension

in which Tommy hands the rock to either Suzy or Billy, we substitute vB in ΨB with the event

sequence v′B = 〈ε1〉 where ε1 = {throws(suzy), throws(billy)}. This yields a new scenario path

ρ′B and the resulting problem for the framework is ψ′B = 〈θB , ρ′B , ADB〉. It is straightforward

to verify that both throws(suzy) and throws(billy) are direct causes for isBroken(bottle) in ρ′B

CHAPTER 4: EXAMPLES 4.1 SCENARIO PATHS

32

Table 4.1: Overview of explanations of {hasRock(suzy)} and {isBroken(bottle)} in transition
states σ2 and σ3, respectively.

Outcome of Interest State Direct Causes

{isBroken(bottle)} σ4 throws(suzy) ∈ ε2
{hasRock(suzy)} σ2 handsRockTo(tommy, suzy) ∈ ε1,

because isBroken(bottle) is a member of both E(throws(suzy), σ1) and E(throws(billy)), σ1). As

before, there are no indirect causes for outcome in the new problem. We have demonstrated that the

framework can identify direct causes that match our intuition in this example of overdetermination.

4.2 Yale Shooting Problem

4.2.1 Direct

Here we use the framework defined above to solve a variant of the well-known Yale shooting

problem (YSP) from [52]. The scenario is as follows:

Shooting a turkey with a loaded gun will kill it. Suzy shoots the turkey. What is the cause of the

turkey’s death?

The YSP example tuple is formalized by ΨY = 〈θY , vY , ADY 〉. The outcome of interest is

θY = {¬isAlive(turkey)}. The sequence of events is vY = {ε1, ε2}, where ε1 = {loads(suzy, gun)}

and ε2 = {shoots(suzy, turkey)}. The action description ADY characterizes the events of the YSP

domain:

shoots(X, turkey) causes ¬isAlive(turkey) if isAlive(turkey)

shoots(X, turkey) impossible if ¬isLoaded(gun)

loads(X, gun) causes isLoaded(gun) if ¬isLoaded(gun)

(4.6)

(4.7)

(4.8)

Laws (4.6) and (4.8) are straightforward dynamic laws describing the effects of the events in the

YSP domain. Law (4.7) states that the turkey cannot be shot if the gun is not loaded. Consider

the path ρY , represented in Figure 4.2. In the initial state of ρY , the turkey is alive, and the turkey

CHAPTER 4: EXAMPLES 4.2 YALE SHOOTING PROBLEM

33

𝜖1= {loads(suzy, gun)}

isAlive(turkey) isAlive(turkey) ¬isAlive(turkey)
¬isLoaded(gun) isLoaded(gun) isLoaded(gun)

𝜎1 𝜎2 𝜎3
𝜖2= {shoots(suzy, turkey)}

Figure 4.2: Path ρY ∈ S(ΨY) is a representation of the Yale shooting scenario.

is dead in the final state of the path after the occurrence of ε1 = {loads(suzy, gun)} and ε2 =

{shoots(suzy, turkey)}.

It is straightforward to verify for the problem ψY = 〈θY , ρY , ADY 〉 that σ3 is the only transition

state of θY and that ε2 is the causing compound event of ¬isAlive(turkey). The elementary event

shoots(suzy, turkey) in ε2 is a direct cause of ¬isAlive(turkey) as per rule (4.6). If we want to know

why the gun was loaded so that Suzy could kill the turkey, we can use rule (4.7) to formulate the

problem ψ′Y = 〈{isLoaded(gun)}, ρY , ADY 〉 to determine that loads(suzy, gun) directly caused the

gun to be loaded.

4.2.2 Indirect

Here we use the framework definitions to solve a novel adaptation of the well-known Yale shooting

problem (YSP). The scenario is as follows:

Shouting near a turkey will startle the turkey, and the turkey will die if it is startled. Suzy walks

to the turkey and shouts. What is the cause of the turkey’s death?

In this case, we want to identify Suzy shouting near the the turkey is an indirect cause of its

death. The elements of the indirect YSP problem are given by ΨY = 〈θY , vY , ADY 〉. The outcome

of interest is θY = {¬isAlive(turkey)}. The sequence of events is given by vY = {ε1, ε2} where

ε1 = {walksTo(suzy, turkey)} and ε2 = {shouts(suzy)}. The action description ADY characterizes

the events of the YSP domain:

shouts(X) causes isStartled(turkey) if ¬isStartled(turkey)

¬isAlive(turkey) if isStartled(turkey)

(4.9)

(4.10)

CHAPTER 4: EXAMPLES 4.2 YALE SHOOTING PROBLEM

34

Laws (4.9) and (4.10) represent the domain knowledge for this example in a straightforward

way. Consider the scenario path ρY ∈ S(ΨY), represented in Figure 4.3. In the initial state of

ρY , the turkey is alive, and the turkey is dead in the final state of the path after the occurrence of

ε1 = {walksTo(suzy, turkey)} and ε2 = {shouts(suzy)}.

 {walksTo(suzy,turkey)

isAlive(turkey) isAlive(turkey) ¬isAlive(turkey)
¬isStartled(turkey)

𝜎1 𝜎2 𝜎3
 {shouts(suzy)

¬isStartled(turkey) isStartled(turkey)

Figure 4.3: Path ρY ∈ S(ΨY) is a representation of the Yale shooting scenario.

It is easy to see that for the new problem ψY = 〈θY , ρY , AD〉, σ4 is the only transition state of θY

and that ε2 is the causing compound event of ¬isAlive

(turkey). Let s represent law (4.10). It is straightforward to verify that there is a static chain

χ({shouts(suzy)},¬isAlive(turkey), σ3) = 〈γ1〉 where s ∈ γ1. Because ¬isDead(turkey) ∈ C(γ1),

Definition 10 is satisfied. Finally, because there are no extraneous events in χ({shouts(suzy)},¬is

Alive(turkey), σ3), {shouts(suzy)} is an indirect cause of ¬isAlive(turkey) for state σ3. We have

used the framework to correctly identify only Suzy’s shouting as an indirect cause of its death.

Moreover, we correctly identified zero direct causes.

4.2.3 Novel Extension

As we have already discussed, the intuitive cause of the turkey’s death is that Suzy shot the turkey.

However, if we know for certain that the gun was not loaded at the start of the story, then we argue

that it may also important to recognize that Suzy loading the gun played a key role in bringing

about the outcome. Mapping this example to a practical setting, say a murder trial, Suzy loading

the gun could contribute to evidence of Suzy’s intention to shoot the turkey. Similarly to how we

built upon the Rock Throwing example in Chapter 4, if we extend this example to say that Tommy

handed Suzy the gun at the start of the scenario, then again we want to identify Tommy’s action as

contributing to the turkey’s death. The extended example as follows:

Tommy hands a gun to Suzy, Suzy loads the gun, and then shoots the turkey. What is the cause

CHAPTER 4: EXAMPLES 4.2 YALE SHOOTING PROBLEM

35

of the turkey’s death?

The elements of the extended Yale shooting problem are given by the example tuple ΨY =

〈θY , vY , ADY 〉. The outcome of interest is represented by θY = {¬isAlive(turkey)}. The sequence

of events corresponding to the Yale shooting scenario is given by vY = {ε1, ε2, ε3} where ε1 =

{handsGun(tommy, suzy)}, ε2 = {loads(suzy, gun)}, and ε3 = {shoots(suzy, turkey)}. The action

description ADY characterizes the events of the bottle breaking domain:

shoots(suzy, turkey) causes ¬isAlive(turkey)

if isAlive(turkey)

shoots(suzy, turkey) impossible if ¬isLoaded(gun)

loads(suzy, gun) causes isLoaded(gun) if ¬isLoaded(gun)

loads(suzy, gun) impossible if isLoaded(gun)

loads(suzy, gun) impossible if ¬hasGun(suzy)

handsGunTo(tommy, suzy) causes hasGun(suzy)

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

Laws (4.11), (4.13), and (4.16) are straightforward dynamic laws describing the effects of the

events in the YSP domain. Law (4.7) states that the turkey cannot be shot if the gun is not loaded.

Finally, law (4.12) says that Suzy cannot load an already loaded gun, and law (4.15) states that X

cannot load the gun if they do not have it in their possession, modeling some simple knowledge

about the gun.

Figure 4.4: Path ρY ∈ S(ΨY) is a representation of the Yale shooting scenario.

Consider the scenario path ρY ∈ S(ΨY), represented in Figure 4.4. In the initial state of ρY , the

CHAPTER 4: EXAMPLES 4.2 YALE SHOOTING PROBLEM

36

gun is not loaded, Suzy is not in possession of the gun, and the turkey is alive. In the second state,

Suzy has the gun, and the gun is loaded in the third. In the final state, the turkey is dead the path

after the occurrence of ε1, ε2, and ε3.

It is straightforward to verify for the problem ψY = 〈θY , ρY , AD〉 that σ4 is the only transition

state of θY in ρY and that ε3 is the causing compound event of ¬isAlive(turkey). The elementary

event shoots(suzy, turkey) ∈ ε3 is a direct cause of ¬isAlive(turkey) because ¬isAlive(turkey) ∈

E(shoots(suzy, turkey),

σ3), as per rule (4.11).

There is more causal information to uncover in this problem. If we want to know why the

gun was loaded so that Suzy was able to shoot the turkey, we can use the preconditions of rule

(4.12) to formulate a new problem. According to this rule, Suzy cannot shoot the turkey if the

gun is not loaded, and so we create the problem ψ′Y = 〈{isLoaded(gun)}, ρY , AD〉 (using the

path and action description of ψ′Y) and determine that loads(suzy, gun) directly caused the gun

to be loaded. Finally, if we want to know why she was able to load the gun in the first place,

we use rule (4.15) to create a new problem ψ′′Y = 〈{hasGun(suzy)}, ρY , AD〉 to determine that

handsGunTo(tommy, suzy) directly caused Suzy to have the gun. Table 4.2 summarizes the causal

explanations for each of the outcomes we considered in this problem. Each row of the first column

gives the outcome of interest of the problems ψY , ψ′Y , and ψ′′Y , respectively. The remaining three

columns provide information about the transition states as well as direct and indirect causes. It

is easy to see that there are no indirect causes for this example. Note that although in this case

we manually constructed our new problems as to uncover additional information about the causal

mechanism, it is possible to define sets of supporting events in a scenario that helped to “set the

state” for the outcome to be caused, as we explored in an earlier version of the framework that did

not support concurrent events [53].

With this example, we demonstrated that our framework can be used to reach a conclusion

about the Yale Shooting Problem that appears to be in line with human intuition.

CHAPTER 4: EXAMPLES 4.2 YALE SHOOTING PROBLEM

37

Table 4.2: Overview of outcomes {¬isAlive(turkey)}, {isLoaded(gun)}, and {hasGun(suzy)}
in transition states σ4,σ3, and σ2 in ρY , respectively.

Outcome of Interest State Direct Causes Indirect Causes

{¬isAlive(turkey)} σ4 shoots(suzy, turkey) ∈ ε3 –

{isLoaded(gun)} σ3 loads(suzy, gun) ∈ ε2 –

{hasGun(suzy)} σ2 handsGunTo(tommy, suzy) ∈ ε1 –

4.3 Firing Squad Problem

In this section we present a problem based on Pearl’s well-known firing squad example [54] to

demonstrate that we can represent and identify contributory causes without using laws that ex-

plicitly describe the direct effects of compound events. The scenario is as follows:

A captain will orders his team of three riflemen to execute two prisoners. The riflemen always hit

their targets, but with varying accuracy. The first rifleman is very skilled and if he fires alone,

the prisoner will die. The second and third riflemen are less skilled and as a result they must

shoot together to ensure a prisoner’s death. The captain orders the execution of the first prisoner

by rifleman 1, he fires, and prisoner 1 is dead. At the same time that rifleman 1 fires, the captain

riflemen 2 and 3 to execute the second prisoner, they fire, and prisoner 2 is dead. What is the

cause of the prisoners deaths?

The extended firing squad example tuple is given by ΨF = 〈θF , vF , ADF 〉 where the out-

come of interest is θF = {¬isAlive(p1),¬isAlive(p2)} and the sequence of events correspond-

ing to the firing squad is given by vF = {ε1, ε2} where ε1 = {ordersExecution(c, p1)}, ε2 =

{firesAt(r1, p1), ordersExecution(c, p2)}, and ε2 = {firesAt(r2, p2),firesAt(r3, p2)}. The action de-

scription ADF characterizes the events of the firing squad domain:

ordersExecution(c, p1) causes orderedToF ire(r1)

ordersExecution(c, p2) causes orderedToF ire(r2),

orderedToF ire(r3)

(4.17)

(4.18)

CHAPTER 4: EXAMPLES 4.3 FIRING SQUAD PROBLEM

38

firesAt(R, p) causes hitBy(p,R)

firesAt(R, p) impossible if ¬orderedToF ire(R)

¬isAlive(p1) if hitBy(p, r1)

¬isAlive(p2) if hitBy(p, r2), hitBy(p, r3)

(4.19)

(4.20)

(4.21)

(4.22)

Law (4.17) states that if the captain c orders the execution of prisoner p1, then rifleman r1 is

ordered to fire. Similarly, law (4.18) states that riflemen r1 and r2 are ordered to fire if c orders

the execution of prisoner p2. Law (4.19) tells us that a rifleman (the shorthand R refers to any

rifleman) firing at the prisoner causes the prisoner to be hit by that rifleman. Law (4.20) states that

a rifleman cannot fire at a prisoner unless the captain has ordered the execution. Finally, laws (4.21)

and (4.22) capture the requirements from the scenario that one shot from rifleman r1 is sufficient

to kill prisoner p1 and simultaneous shots by riflemen r2 and r3 are sufficient to kill prisoner p2,

respectively. In this model of the scenario, we state that firing at the prisoner directly causes the

prisoner to be hit by the rifleman, which in turn results in his death.

σ1

isAlive([p1, p2]),
¬hitBy(p1, [r1, r2, r3]),
¬hitBy(p2, [r1, r2, r3]),
¬orderedToF ire(r1)

ε1

{ordersExecution(c,p1)

σ2

{orderedToFire(r1)

ε2
{

firesAt(r1,p1),
ordersExecution(c,p2)

σ3

{
hitBy(p1, r1),
¬isAlive(p1),
orderedToFire([r2, r3])

ε3

{firesAt([r2, r3],p2)

+̆002C

σ4

{
hitBy(p2, r2)
hitBy(p2, r3)
¬isAlive(p2)

Figure 4.5: Path ρF ∈ S(ΨF) is a representation of the firing squad scenario.

Consider the scenario path ρF ∈ S(ΨF), graphically represented2 in Figure 4.5. In the ini-

tial state, both prisoners are alive, represented by the literal isAlive([p1, p2]). In this state, they

have not been hit by any riflemen, and the riflemen have not yet been ordered to fire, represented

in σ1 by literal ¬orderedToF ireAt([r1, r2, r3]). Finally, the prisoners are both alive in σ1, repre-

sented by the literal isAlive([p1, p2]), and they have not yet been hit by any rifleman, represented

by ¬hitBy(p1, [r1, r2, r3]) and ¬hitBy(p2, [r1, r2, r3]). The compound events ε1, ε2, and ε3 in path

2For clarity of presentation, we use shorthand [r1, r2, r3] and [r2, r3] for all fluents and events referring to more than
one rifleman. We will sometimes use similar shorthand when referring to both prisoners.

CHAPTER 4: EXAMPLES 4.3 FIRING SQUAD PROBLEM

39

ρF capture the events of the scenario. The prisoners are no longer alive in state σ3.

It is straightforward to verify for the problem ψF = 〈θF , ρF , AD〉 that σ4 is the only tran-

sition state of the outcome θF in ρF , that the literal ¬isAlive(p1) ∈ θF holds in σ3 as an ef-

fect of compound event ε2, and that the literal ¬isAlive(p2) ∈ θF holds in σ4 as an effect of

compound event ε3. The compound event ε = {firesAt(r1, p1)} in ε2 is an indirect cause of

¬isAlive(p1) for σ3 because there exists static chain with no extraneous events linking its direct

effects to ¬isAlive(p1) via the dynamic law (4.19), where R = r1, and the state constraint (4.21).

Similarly, ε′ = {firesAt(r2, p),firesAt(r3, p)} in ε2 is an indirect cause of ¬isAlive(p2) for σ4 via the

dynamic laws (4.19), where R = r2 and R = r3, and the state constraint (4.22). Note that although

there is a static chain χ({firesAt(r1, p1),

ordersExecution(c, p2)},¬isAlive(p1), σ3), the subset {firesAt(r1, p1),

ordersExecution(c, p2)} is not an indirect cause because the captain ordering the execution of the

second prisoner had no bearing on the death of the first. In the first three sections of this chapter,

we have demonstrated that the framework is capable of identifying actual causation in interesting

extensions of well-known examples from the literature.

4.4 Self-Driving Car Problem

In this section, we present a example based on distributed system architecture models of self-

driving cars (e.g. [55]) in which the components required to operate a car are broken into distinct

submodules that communicate with one another to make driving decisions. For safety, a fully au-

tonomous (without human control) driving system with this type of architecture is likely to have

multiple backup modules and systems that can take over specific driving-related tasks in case the

primary module is somehow compromised. In this example, we assume that a combination of nec-

essary modules are communicating with one another behind the scenes to operate the car. More-

over, we expect that there are multiple types of each required module, which can be swapped in

and out at any time as needed by some unseen mechanism (e.g. on-board system reconfiguration

software). We will rely on the active modules only to report the actions they take so that we can

reason about how these actions affect the state of the car over time. In this section we will provide

CHAPTER 4: EXAMPLES 4.4 SELF-DRIVING CAR PROBLEM

40

preliminary information about a hypothetical self-driving car and will then present a crash scenario

as a problem ψS and leverage the reasoning framework to identify a set of causal explanations that

will indicate which modules may be to blame for the crash.

4.4.1 Example Preliminaries

A self-driving car in this example is represented by S = 〈ρS , ADS〉, where ρS is a path in τ(ADS)

representing the evolution of S’s state. The car drives in a single direction and is able to accelerate,

decelerate, and come to a full stop. Obstacles may be placed in its path, some of which will cause

the car to crash if it accelerates towards such an obstacle.

The automated driving system of S must have exactly one type of obstacle detection mod-

ule (types o 1 and o 2), one type of decision making module (types d 1 and d2), and one type of

control module (types c 1 and c 2) active at a given point in time. The configuration of active

modules can change in the background without S’s knowledge. An obstacle detection module

o must report a detected obstacle of type a, b, or c, denoted by elementary events r(obst(a), o),

r(obst(b), o), and r(obst(c), o), respectively. A decision making module d can report a decision of

type accel, decel, and stop, represented by elementary events r(decis(accel), d), r(decis(decel), d),

and r(decis(stop), d), respectively, if it makes a driving decision. Both obstacle detection and de-

cision making modules, generalized as m for this discussion, must report when they are analyz-

ing data, represented by elementary event r(analyze,m). Finally, a control module c must report

acting on one of the three types of decisions, given by the elementary events r(actOn(accel), c),

r(actOn(decel), c), and r(actOn(stop), c). Modules can act simultaneously and each compound

event ε in ρS represents a collection of actions executed by modules of S.

The knowledge of events in this domain are characterized by the action description ADS con-

taining the following laws (4.23) through (4.28).

r(obst(B), O) causes known(obst(B)) if obstMod(O)

r(decis(A), D) causes mustAct(A) if decMod(D)

(4.23)

(4.24)

CHAPTER 4: EXAMPLES 4.4 SELF-DRIVING CAR PROBLEM

41

r(actOn(A), C) impossible if ¬mustAct(A)

r(actOn(A), C) causes ¬mustAct(A) if ctrlMod(C)

r(actOn(accel), C) causes infer(crash) if known(obst(a))

error(crash) if infer(crash)

(4.25)

(4.26)

(4.27)

(4.28)

Law (4.23) states that if an obstacle detection module reports an obstacle, then the car knows

about it, which is represented by the literal known(obst(B)). Law (4.24) states that if a decision

module reports a decision A, then the decision A must be acted upon, represented by the literal

mustAct(A). Law (4.25) tells us that a control module will not report an action unless there is

knowledge that a corresponding decision that must be acted upon. ADS further specifies that a

decision only needs to be acted upon once via law (4.26). Notice that the inclusion of predicates

obstMod, decMod, and ctrlMod in laws (4.23), (4.25), (4.26), and (4.27) can be viewed as something

of a layer of security that ensures only reports from known modules are able to affect the state of

the car.

Law (4.27) clarifies the earlier presented knowledge that accelerating the car with knowledge

of an obstacle of type a will result in a crash. Finally, law (4.28) tells us that the error message

error(crash) will become true if we can infer that a crash has occurred via law (4.27).

4.4.2 Crash Scenario and Explanations

A self-driving car S = 〈ρS , ADS〉 indicates that it has crashed with the message error(crash). We

formulate the problem ψS = 〈θS , ρS , ADS〉, where θS = {error(crash)} in order to learn about why

S believes that a crash occurred.

Path Description. The crash scenario according to S is given by the path ρY , depicted in Figure 4.6.

In the figure, the initial state is fully specified and the subsequent states are represented by the liter-

als that have changed as a result of their respective transitions. The initial state of the path includes

a fluent obstMod(O), decMod(D), and ctrlMod(C) for each type of respective module (e.g. o 1, d 1,

and c 1). All remaining literals in the initial state, depicted above state σ1 in the figure, are initially

CHAPTER 4: EXAMPLES 4.4 SELF-DRIVING CAR PROBLEM

42

σ1

¬error(crash),
¬known(obst([a, b, c])),
¬infer(crash),
¬mustAct(accel),
¬mustAct(decel),
¬mustAct(stop)

{
r(obst(a),o 1),
r(analyze, d 1)

{
r(analyze, o 2),
r(decis(accel),d 1)

ε1
σ2

known(obst(a))

ε2
σ3

mustAct(accel)

ε3

{
r(obst(a), o 2)
r(analyze, d 2)
r(actOn(accel), c 1)

+̆002C

σ4

error(crash)
infer(crash)

Figure 4.6: Path ρS is a representation of car S’s crash scenario.

false. This means that there is not yet an error message or inference about a crash. Moreover, the

fact that there is no known obstacle is given by the shorthand ¬known(obst([a, b, c])), representing

three distinct three distinct literals of the form ¬known(obst(OB)) where OB ∈ {a, b, c}.

The car is not initially obligated to perform any action, possibly indicating that S is stopped in

state σ1. In compound event ε1, module o 1 reports an obstacle of type a and module d 1 reports

that it is analyzing data. In compound event ε2, module o 1 has apparently been swapped out for

o 2, which reports that it is analyzing data. In the same compound event, module d 1 reports a

decision to accelerate. Finally, in compound event ε3, module o 2 reports an obstacle of type a,

module d 1 has been swapped out for d 2, which reports that it is currently analyzing data, and

module c 1 reports that it is acting on the decision to accelerate. The states of ρS can be inferred

using ADS , and the figure depicts the literals that were changed in each state by the events of ρS .

Namely, o 1’s report added knowledge of an obstacle of type a in σ1, d 1’s report in ε2 obligated the

car to accelerate, and the control module c 1’s report about acting upon the decision to accelerate

caused S to infer the crash in σ4, which in turn caused error(message) to hold in the same state.

Explaining the Crash Error Message. It is straightforward to verify via ρS that σ4 is the only

state of ρS in which error(crash) holds. Compound event ε3 is clearly the causing compound

event of error(crash) because σ4 is the only transition state of this literal. The compound event

{r(actOn(accel), c 1)} of ε3 is a indirect cause of error(crash) in σ4 due to laws (4.27) and (4.28). In

other words, this causal explanation tells us that the act of accelerating in state σ3 caused S to infer,

CHAPTER 4: EXAMPLES 4.4 SELF-DRIVING CAR PROBLEM

43

using knowledge of known(obst(a)) that there was a crash, which indirectly caused the error.

Identifying Additional Modules to Blame. While it is useful to learn which event led to the crash

error message, there is not yet enough information to assign blame to a module. A next step that can

be taken is to identify which module reported the decision to accelerate, resulting the system need-

ing to act on that decision. It is straightforward to verify in this case that d1’s act of reporting the

decision directly obligated the car to accelerate because mustAct(accel) ∈ E(r(decis(accel), d1)).

It is also straightforward to reason that o1 was the obstacle detection module that reported the

obstacle of type a in ε2.

In this example we have demonstrated that the framework can be used to reason to varying

depths about the nature of an error message in a theoretical distributed system. Although the

example is relatively simple compared to real-world distributed systems, we show that it may be

possible to add a reasoning layer over a system of independently acting parts of a complex system

in order to pin-point the source of unexpected behavior of the system as a whole.

CHAPTER 4: EXAMPLES 4.4 SELF-DRIVING CAR PROBLEM

44

Chapter 5: Implementation

In this chapter we present an approach to automating the task of explaining actual cause using ASP.

We first discuss the translation of a problem ψ = 〈θ, ρ, AD〉. Next, we present the encoding of the

semantics of AL, adapted from [43]. We then proceed to encode the definitions of the framework

as ASP rules. Following that, we present soundness and completeness results about the correctness

of the programs encoding the definition of direct cause and the improved definition of indirect

cause. Finally, we will present ASP translations of the extended Yale Shooting Problem and the

self-driving car problem from Chapter 4

5.1 Implementation Details

5.1.1 Problem Translation

We begin by encoding the elements of a problem ψ = 〈θ, ρ,AD〉. The set α(θ) contains a fact

outcome(theta) as well as facts inOutcome(l, theta), olit(l), and inOutcome(l, olit(l)) for every l ∈ θ.

We use the olit(l) notation to denote the outcome coinciding with the singleton {l}.

The elements of a path ρ = 〈σ1, ε1, σ2, . . . , εk, σk+1〉 are represented by the sets α(ρ). The set

α(ρ) contains a fact occurs(e, i) for every e ∈ εi and a fact holds(l, i) for each literal l ∈ σi where

1 ≥ i < k + 1. The set also contains facts event(e) and fluent(f) for each e ∈ E and f ∈ F ,

respectively. Next, for every compound event εi in ρ, the set α(ρ) also contains facts according to

⋃

k∈P(εi)\∅

{subset(λ(k, i), i)} ∪ (
⋃

e∈k

{inSubset(e, λ(k, i))})

where P(εi) denotes the powerset of εi, and λ(k, i) is a unique identifier for the translation of

subset k of εi. This encoding will be helpful when we are considering subsets of compound events

as indirect causes.

The set α(ρ) finally contains a fact step(i) for every state σi in ρ. The set α(ρ) represents all

knowledge of the path ρ needed to reason for direct and indirect causes.

45

The set α(AD) is the translation of the action description AD.

1. α(d : e causes l0 if l1, . . . , ln) is the collection of atoms

d law(d), head(d, l0), event(d, e),

prec(d, 1, l1), . . . , prec(d, n, ln), prec(d, n+ 1, nil).

2. α(s : l0 if l1, . . . , ln) is the collection of atoms

s law(s), head(s, l0),

prec(s, 1, l1), . . . , prec(s, n, ln), prec(s, n+ 1, nil).

3. α(ι : e impossible if l1, . . . , ln) is the collection of atoms

i law(ι), event(ι, e),

prec(ι, 1, l1), . . . , prec(ι, n, ln), prec(ι, n+ 1, nil).

The set α(ψ) = α(θ) ∪ α(ρ) ∪ α(AD) is the complete ASP encoding of the problem ψ. Next, we

present the encoding of the semantics of AL.

5.1.2 Semantics of Action Language AL

The rules of program ΠAL capture the semantics of AL and are adapted from [43]:

holds(L, I2)← step(I1), step(I2), next(I1, I2)

d law(D), head(D,L), prec h(D, I)

event(D,E), occurs(E, I1).

holds(L, I)← step(I),

s law(S), head(S,L), prec h(S, I).

(5.1)

(5.2)

CHAPTER 5: IMPLEMENTATION 5.1 IMPLEMENTATION DETAILS

46

← step(I),

i law(IM), prec h(IM, I),

event(IM,E), occurs(E, I).

prec h(R, I)← step(I),

all h(R, 1, I).

all h(R,N, I)← prec(R,N, nil).

all h(R,N,P)← step(I)

prec(R,N,P),

holds(P, I),

all h(R,N + 1, I).

holds(L, I2)← holds(L, I1), not holds(L, I).

← holds(L, I), holds(L, I).

next(I1, I2)← step(I1), step(I2),

I2 = I1 + 1.

(5.3)

(5.4)

(5.5)

(5.6)

(5.7)

(5.8)

(5.9)

D, S, IM are variables for the names of AL laws, E and L are variables for the names of events

and fluent literals respectively, and I and N are integers. Rules (5.1) and (5.2) in Π describe the

effects of dynamic laws and and state constraints of AD. Rule (5.3) constrains when an event can-

not occur according to the executability conditions in AD. Relation prec h(R, I) defined by(5.4) of

Π tells us that all of the preconditions of a law R in α(AD) are satisfied at step I . This relation is

defined via an auxiliary relation all h(R,N, I) (rules (5.5) and (5.6)), which holds if the precondi-

tions l1,. . . ,lm of R are satisfied at step I . Here, l1, . . . , lm refer to the ordering of conditions of r

according to α(AD). We use the identifier R to enable re-use of rules (5.4), (5.5), and (5.6) to reason

about the preconditions of dynamic law, state constraints, and executability conditions. Rule (5.7)

is the inertia axiom [39] and rule (5.8) removes inconsistent states in the reasoning process. In rules

CHAPTER 5: IMPLEMENTATION 5.1 IMPLEMENTATION DETAILS

47

(5.7) and (5.8), we denote by L the complement of L and so given a literal l, l = ¬l and ¬l = l. We

explicitly represent subsequent steps by means of the rule (5.9).

5.1.3 Transition States and Causing Compound Events

The rules in set ΠT characterize a transition state σj of θ in path ρ.

transitionState(OC, J ′)← step(J), step(J ′),

next(J, J ′), outcome(OC),

¬ocSat(OC, J),

not ¬ocSat(OC, J ′)

(5.10)

¬ocSat(OC, J)← step(J),

inOutcome(OC,L),

holds(L, J).

(5.11)

Rule (5.10) identifies a transition state J ′ for outcome OC as one in which OC is satisfied and was

not at J . Rule (5.11) describes when an outcome OC is not satisfied at a given step J .

The rules of program ΠC describe possibly causing compound events and causing compound

events of a literal L that holds at step I .

pcce(I, L, J)← step(I), step(J), next(I, I ′),

transitionState(olit(L), I ′),

I < J,

transitionState(theta, J).

(5.12)

(5.13)

CHAPTER 5: IMPLEMENTATION 5.1 IMPLEMENTATION DETAILS

48

¬cce(I, L, J)← pcce(I, L, J),

pcce(I ′, L, J),

I < I ′.

cce(I, L, J)← pcce(I, L, J),

not ¬cce(I, L, J).

(5.14)

(5.15)

Rule (5.12) corresponds to Definition 5 and tells us that a step I is a possibly causing compound

event of literal L holding in J if, first, it occurs prior to step J . Next, I ′ must be a transition state of

outcome(olit(L)). The last line of (5.12), transitionStep(theta, J) is the key to linking the literal we

are explaining to the outcome of interest. This line ensures that any possible causing step we are

considering is with respect to a transition state of the outcome(theta).

Rule (5.14) corresponds to condition 3 of Definition 6 and (5.15) is a straightforward rule stating

that a possible causing step I of L in step J is a causing step if we have no reason to believe that it

is not a causing step.

5.1.4 Direct Cause

Here we present characterization of the definition of direct cause. The rules of ΠD describe when

an event that occurred at causing step I has directly caused L to hold in step I . ΠD contains the

rules corresponding to the definition of a direct cause.

directEffect(L,E, I)← step(I),

d law(D), event(D,E), occurs(E, I),

prec h(D, I), head(D,L).

directCause(E, I, L, J)← cce(I, L, J),

directEffect(L,E, I).

(5.16)

(5.17)

CHAPTER 5: IMPLEMENTATION 5.1 IMPLEMENTATION DETAILS

49

Rule (5.16) leverages rule prec h(D, I) of ΠAL to identify when the literal L will be caused as a

direct effect of an event occurring at step I . Rule (5.17) states that E occurring at I is a direct cause

of L holding at step J if I is a causing step of L in J and L is a direct effect of E as per rule (5.16).

5.1.5 Simple Notion of Indirect Cause

The program ΠIS contains the following rules (5.18) through (5.30), which are used to identify

indirect causation for Definition 8. Given a causing step I ,we are interested in identifying any

subset of events that occurred at I and caused the literal under consideration to hold indirectly.

The following rule describes possible indirect causes.

possIC(C, I, L, J)← subset(C), (5.18)

causingStep(I, L, J),

not ¬occAt(C, I),

not dirEffSubset(L,C, I).

Rule (5.18) says that a possible indirect cause is a subset C such that I is a causing step for the

literal L holding at step J and we have no reason to believe that any event in C did not occur at

step I or that any events in the subset caused the literal directly. The next rule ensures that the

compound event under consideration actually occurs as a whole at step I .

¬occAt(C, I)← step(I), (5.19)

inSubset(E,C),

not occurs(E, I).

We determine when a literal L is a direct effect of at least one elementary event of C using the

following rule:

CHAPTER 5: IMPLEMENTATION 5.1 IMPLEMENTATION DETAILS

50

dirEffSubset(L,C, I)← inSubset(E,C), (5.20)

directEffect(L,E, I).

Rule (5.20) leverages rule (5.16) to determine when a literal L is a direct effect of a subset of

events C. Recall that condition 2 of Definition 8 states that if ε′ ∈ εi is an indirect cause of l, then a

transition t′ must exist in τ(AD) such that if ε′ occurring by itself in σi results in a transition state of

{l}. Given a possible indirect cause possIC(C, I, L, J), this reasoning can be accomplished in ASP

by creating a hypothetical sequence whose initial state and events coincide with those of interest

from the sequence of steps, namely step I and the events that occur at I . We refer to this check as

the hypothetical reasoning test.

next(µ(C, I), µ′(C, I))← possIC(C, I, L, J),

hstep(µ(C, I))← next(µ(C, I), µ′(C, I)).

hstep(µ′(C, I))← next(µ(C, I), µ′(C, I)).

step(I)← hstep(I).

(5.21)

(5.22)

(5.23)

(5.24)

Rules (5.21), (5.22), and (5.23) establish an ordering for hypothetical steps, or h-steps. Rule (5.24)

states that an h-step is a kind of step. The following rules ensure the coincidence of the hypothetical

sequence with the relevant step and event(s) of α(ρ).

CHAPTER 5: IMPLEMENTATION 5.1 IMPLEMENTATION DETAILS

51

holds(L, µ(C, I))← holds(L, I), (5.25)

possIC(C, I, L, J),

occurs(E,µ(C, I))← (5.26)

possIC(C, I, L, J), (5.27)

inSubset(E,C),

In order to indicate that subset C has passed the hypothetical reasoning test for causing L in

step I , we add the following rule which we will use later to describe indirect causation.

hypotheticalPass(C, I, L, J)← possIC(C, I, L, J), outcome(olit(L)), (5.28)

transitionStep(olit(L), µ(C, I)).

Next, rule (5.29) ensures that the candidate subset C is a smallest subset for which possIC(C, I,

L, J) holds by comparing C’s cardinality against all other possible indirect causes possIC(C ′, I, L,

J) where C 6= C ′.

CHAPTER 5: IMPLEMENTATION 5.1 IMPLEMENTATION DETAILS

52

¬smallest(C,L, I)← possIC(C, I, L, J), (5.29)

subset(C ′), C 6= C ′,

possIC(C ′, I, L, J),

#count{E : inSubset(E,C)} = X,

#count{E : inSubset(E,C ′)} = X ′,

X > X ′.

Finally, we can say that a subset C is an indirect cause if it is the smallest one that passes the

hypothetical reasoning test.

indirectCause(C, I, L, J)← hypotheticalPass(C, I, L, J), (5.30)

not ¬smallest(C,L, I).

The connection between direct causes and the above programs is given later in this chapter by

Theorem 1. The connection between the above programs and the simple notion of indirect cause is

given by the following proposition.

Proposition 6. Let ψ = 〈θ, ρ,AD〉 be a problem, εi be a compound event in ρ, σj be a transition state

of θ in ρ, l be a literal in θ, and Πψ be a problem translation of ψ. Given the program ΠindirectS =

Πψ ∪ ΠAL ∪ ΠT ∪ ΠC ∪ ΠIS , compound event ε ∈ εi is a indirect cause of l holding in σj if-and-only-

if the atoms indirectCause(c, i, l, j) and subset(c, i) are in the answer set of Πindirect, as well as an atom

inSubset(e, c) for every e ∈ ε.

5.1.6 Improved Definition of Indirect Cause

The program ΠI contains the following rules (5.31) through (5.42) which identify indirect causation

for Definition 5.42. Given a step I , the following rule leverages the ASP translation of the seman-

CHAPTER 5: IMPLEMENTATION 5.1 IMPLEMENTATION DETAILS

53

tics AL of and allows us to determine which literal(s) of a state constraint’s preconditions were

preserved in I by inertia:

preservedPrec(S,L, I ′)← s law(S), prec h(S, I ′), (5.31)

prec(S,X,L), holds(L, I), next(I, I ′).

The next rule requires that when a literal in S’s preconditions was caused to hold directly by a

subset C of the events that occurred in step I .

directlyCausedPrec(S,C,L, I ′)← s law(S), prec h(S, I ′), inSubset(E,C), (5.32)

prec(S,X,L), directEffect(L,E, I),

holds(L, I), next(I, I ′).

Note that line 3 in directlyCaused(S,C,L, I ′) requires that a literal that is directly caused must

not have held in the previous state, in correspondence with our condition that inertia is prioritized

over direct causation. The next rule characterizes the first link of a static chain:

gamma(1, S, C, L, I ′)← subset(C, I), holds(L, I ′), s law(S), (5.33)

prec h(S, I ′), next(I, I ′),

#count{L1 : preservedPrec(S,L1, I ′)} = N1,

#count{L2 : directlyCausedPrec(S,C,L2, I ′)} = N2,

N2 > 0,

#count{L3 : prec(S,X,L3), L3! = nil} = N3,

N3 = N1 +N2.

CHAPTER 5: IMPLEMENTATION 5.1 IMPLEMENTATION DETAILS

54

Rule (5.33) tells us when a state constraint S belongs in the first link of a chain. We use the

#count aggregate to compare the number of preserved preconditions of S and the number of pre-

conditions directly caused by C with the total number of preconditions for S (excepting the “nil”

precondition), in accordance with Condition 1 of Definition 10. In the third line of this rule, we re-

quire that the set of directly caused preconditions of S in the first link is non-empty by constraining

this sum to be a value greater than zero. Preventing the overlap of preserved and directly caused

preconditions of S (see rule (5.32)) allows us to use the inequality on 7th line of this rule to satisfy

condition 1 of Definition 9. We use a similar approach to characterize subsequent links of a static

chain.

gamma(G+ 1, S, C, L, I ′)← subset(C, I), holds(L, I ′), s law(S), prec h(S, I ′), (5.34)

next(I, I ′), gamma(G,X,C,L, I ′),

#count{L1 : preservedPrec(S,L1, I ′)} = N1,

#count{L2 : directlyCausedPrec(S,C,L2, I ′)} = N2,

#count{L3 : causedByGamma(S,L3, G,C, L, I ′)} = N3,

N3 > 0,

#count{L4 : causedByGamma(S,L4, G′, C, L, I ′),

G′ <= (G− 1)} = N4,

#count{L5 : prec(S,X,L5), L5 ! = nil} = N5,

N5 = N1 +N2 +N3 +N4, (5.35)

not consequenceOfGamma(L,G,C, L, I ′).

Here we aim to characterize link G + 1 of the chain in terms of the earlier links in the chain, direct

effects of events, and inertia. Recall that in condition 2 of Definition 9, the set of preserved and

directly caused preconditions can be empty. However, the definition does require that the number

CHAPTER 5: IMPLEMENTATION 5.1 IMPLEMENTATION DETAILS

55

of preconditions of S made to hold as a consequence of the immediately previous link is greater

than zero for any link following the first link in a chain. Before continuing the discussion of (5.34),

we will enforce this condition with some auxiliary rules:

consequenceOfGamma(L′, G,C, L, I ′)← gamma(G,S,C, L, I ′), head(S,L′). (5.36)

It is easy to see that this rule characterizes literals that belong to the set of consequences C(γg)

of a link γg . The next rule characterizes preconditions of a particular state constraint have been

caused by a given link.

causedByGamma(S,L′, G,C, L, I ′)← s law(S), prec h(S, I ′), (5.37)

prec(S,X,L′),

consequenceOfGamma(L′, G,C, L, I ′).

Returning to rule (5.34), the 5th line counts the number of preconditions of a candidate S for the

G + 1-th link caused by the immediately previous link J with the constraint that the value of this

sum is greater than zero. The 6th line also leverages (5.37) to count the number of preconditions of

S satisfied by links that appear earlier in the chain than the immediately previous link. Finally, in

the 8th line we require that the literal L is not a consequence of the G-th link in accordance with

condition 2 of Definition 9.

For the simplicity of the presentation, we have given the encoding for the case of condition 2 of

Definition 9 for which C({γ1, . . . , γg−2}) ∩ C(γg−1) = ∅. Extending the program to the case where

there is overlap is trivially accomplished with the addition of a rule such as

CHAPTER 5: IMPLEMENTATION 5.1 IMPLEMENTATION DETAILS

56

overlap(G,L′, C, L, I)← causedByGamma(S,L′, G,C, L, I ′),

causedByGamma(S,L′, G′, C, L, I ′),

G′ < G.

along with the addition of a suitable #count aggregate to rule (5.33). Herein we refer to the case

without overlap as a no overlap case.

The following rule characterizes the existence of a chain chain(C,L, I)

chain(C,L, I ′)← gamma(G,S,C, L, I ′), (5.38)

consequenceOfGamma(L,G,C, L, I ′).

It is now easy to see that these rules correspond to the conditions of the definition of a static chain.

Once a chain is found, it needs to be tested to determine whether or not it is actually an indirect

cause of the literal in question as per Definition 10 of indirect cause. If the chain chain(C,L, I)

exists, then we claim that Condition 1 of the definition is satisfied for C.

It remains to rule out chains whose subsets have extraneous events, that is to say that C does

not contain any events whose direct effects do not appear in the preconditions of any link of the

chain under consideration as per the definition of indirect cause. The following rule characterizes

the set of preconditions for link G:

preconditionOfGamma(P,G,C, L, I ′)← gamma(G,S,C, L, I ′), (5.39)

prec(S,X, P), P ! = nil.

Rule (5.40) leverages the previous rule to identify when an event E belonging to a subset C has

CHAPTER 5: IMPLEMENTATION 5.1 IMPLEMENTATION DETAILS

57

directly contributed to the preconditions of any link Y in a chain linking C and L at step I ′:

contributed(E,P,C, L, I ′)← preconditionOfGamma(P, Y,C, L, I ′), (5.40)

inSubset(E,C), directEffect(P,E, I),

next(I, I ′).

Rule (5.41) leverages the previous rule to characterize events that did not contribute to a precondi-

tion of any link in a static chain under consideration:

extraEventsInSubset(C,L, I ′)← chain(C,L, I ′), (5.41)

inSubset(E,C),

not contributed(E,P,C, L, I ′).

If there is no reason to believe that an event E has contributed to the preconditions of any link

in the chain under consideration, then the event is extraneous and the subset cannot be an indirect

cause. Rules (5.39), (5.40), and (5.41) clearly correspond to condition 2 of Definition 10. Finally, rule

(5.42) characterizes the improved definition of indirect cause:

indirectCause(C, I, L, J)← cce(I, L, J), (5.42)

chain(C,L, I ′), next(I, I ′),

not extraEventsInSubset(C,L, I ′).

The rule states that if there is a causing compound event at step I , then there exists a subset of

events C that has occurred at step I , a static chain links C to L in the subsequent step I ′, and there

are no extraneous events in C that have not contributed to the preconditions of the chain, then C is

CHAPTER 5: IMPLEMENTATION 5.1 IMPLEMENTATION DETAILS

58

an indirect cause of L for transition state J of outcome(theta).

5.2 Theoretical Results

In this section, we state and prove the soundness and completeness of the programs for computing

direct cause and improved indirect cause. We begin with the statement for Πdirect.

Theorem 1. Let ψ = 〈θ, ρ, AD〉 be a problem, εi be a compound event in ρ, σj be a transition state of θ in ρ,

l be a literal in θ, and Πψ be a problem translation of ψ. Given the program Πdirect = Πψ∪ΠAL∪ΠT ∪ΠC∪

ΠD, elementary event e ∈ εi is a direct cause of l holding in σj if-and-only-if the atom directCause(e, i, l, j)

is in an answer set of Πdirect.

Proof. Left-to-right.

We begin by characterizing an answer set A of Πdirect containing an atom directCause(e, i, l, j).

The answer set first contains the problem translation set α(ψ).

• Next, A contains an atom of form transitionState(theta, j∗) for every transition state σj∗ of θ

in ρ,

• and an atom transitionState(olit(l∗), i∗) for every transition state σ∗i of the singleton set {l∗}

for l∗ ∈ θ.

• A also contains an atom ¬ocSat(theta, s∗) for each state σs∗ in ρ such that θ 6⊆ σ∗s .

• Similarly, for l∗ ∈ θ where {l∗} 6⊆ σt∗ in ρ, A contains an atom ¬ocSat(olit(l∗), t∗).

• Given a literal l∗ ∈ θ and a transition state σj∗ of θ in ρ, A contains an atom pcce(i∗, l∗, j∗) for

every possibly causing compound event εi∗ of {l∗} for σj∗ .

• Given possibly causing compound events εi∗ and εi′∗ of {l∗} for σj∗ , A contains an atom

¬cce(i∗, l∗, j∗) when i∗ < i′∗.

• A also contains an atom cce(i∗, l∗, j∗) for every causing compound event ε∗i of a literal l∗ ∈ θ

for a transition state σ∗j of θ.

CHAPTER 5: IMPLEMENTATION 5.2 THEORETICAL RESULTS

59

• For every literal l∗ ∈ E(e∗, i∗) where elementary event e∗ occurs at i∗ in ρ, A also contains an

atom directEffect(l∗, e∗, i∗).

• Finally, A contains an atom directCause(e, i, l, j) for every elementary event e∗ ∈ εi∗ in ρ that

is a direct cause of l∗ for a transition state σj∗ of θ.

Let us show that if e is a direct cause of l holding in σj , then A is an answer set of Πdirect by

proving that A is the minimal set of atoms closed under the rules of the reduct ΠA
direct. We give

a simplified form of the reduct where the occurrences of atoms of the form next(i, j) have been

unfolded into expressions j = i+ 1. One can easily check that this form of the reduct is equivalent

to the form that uses next(i, j). ΠA
direct contains:

1. set α(ψ)

2. all rules in ΠAL

3. a rule of the form

transitionState(o∗, j∗)← step(j′∗), step(j∗),

j∗ = j′∗ + 1,¬ocSat(o∗, j′∗).

where o∗ is either the constant theta or a term of the form olit(l∗) (where l∗ is a fluent literal),

and integers j∗ and j′∗ such that ¬ocSat(o∗, j∗) 6∈ A.

4. a rule of the form

¬ocSat(o∗, j∗)← step(j∗), holds(l∗, j∗), inOutcome(o∗, l∗).

where o∗ is either the constant theta or a term of the form olit(l∗) where l∗ is a fluent literal,

and integers j∗.

CHAPTER 5: IMPLEMENTATION 5.2 THEORETICAL RESULTS

60

5. a rule of the form

pcce(i∗, l∗, j∗)← step(i∗), step(i′∗), i′∗ = i∗ + 1,

transitionState(olit(l∗), i′∗), i∗ < j∗,

transitionState(theta, j∗).

for all literals l∗ and integers i∗, j∗.

6. a rule of the form

¬cce(i∗, l∗, j∗)← pcce(i∗, l∗, j∗),

pcce(i′∗, l∗, j∗),

i∗ < i′∗.

for all literals l∗ and integers i∗, j∗.

7. a rule of the form

cce(i∗, l∗, j∗)← pcce(i∗, l∗, j∗).

for all literals l∗, and integers i∗, j∗ such that ¬cce(i∗, l∗, j∗) 6∈ A.

8. a rule of the form

directEffect(l∗, e∗, i∗)← step(i∗), d law(d∗), event(d∗, e∗)

occurs(e∗, i∗), prec h(d∗, i∗), head(d∗, l∗).

for all literals l∗, integers i∗, events e∗, and dynamic laws d∗.

CHAPTER 5: IMPLEMENTATION 5.2 THEORETICAL RESULTS

61

9. a rule of the form

directCause(e∗, i∗, l∗, j∗)← cce(i∗, l∗, j∗),

directEffect(l∗, e∗, i∗).

for all literals l∗, integers i∗, events e∗, and dynamic laws d∗.

A is closed under ΠA
direct. We will prove it for every rule of the program.

Rules of group [(1)]: obvious.

Rules of group [(2)]: The conclusion follows from Theorem 1 from [43].

Rules of group [(3)]: If the rule is in ΠA
direct, then ¬ocSat(o∗, j∗) 6∈ A and therefore o∗ ⊆ σj∗ by

construction of A. If the body is satisfied in A, then o∗ 6⊆ σj′∗ and j∗ = j′∗ + 1 by construction.

By Definition 4, if o∗ 6⊆ σj′∗ and o∗ ⊆ σj∗ , then σj∗ is a transition state of o∗. Finally, the atom

transitionState(l∗, j∗) ∈ A by construction of A.

Rules of group [(4)]: If the body is satisfied in A, then there exists a literal l∗ ∈ o∗ whose comple-

ment l∗ ∈ σj∗ by construction of A. Because σj∗ is consistent, it must be the case that l∗ 6∈ σj∗ ,

which can also be written as {l∗} 6⊆ σj∗ . Finally, we know from construction of A that whenever

there exists a literal l∗ ∈ o∗ such that {l∗} 6⊆ σj∗ , the atom ¬ocSat(o∗, j∗) is added to A.

Rules of group [(5)]: If the body is satisfied inA, then σi′∗ in ρ is a transition state of {l∗}, i′∗ = i∗+1,

σj∗ in ρ is a transition state of θ in ψ, and i < j by construction of A. By Definition 5, ε∗i is a

possibly causing compound event of l∗ for transition state σj∗ in ρ. Finally, A contains the atom

possiblyCausingCompoundEvent(i∗, l∗, j∗) by construction of the set.

Rules of group [(6)]: If the body is satisfied in A, then there exists possibly causing compound

CHAPTER 5: IMPLEMENTATION 5.2 THEORETICAL RESULTS

62

events εi∗ and εi′∗ of a literal l∗ ∈ σj∗ such that i∗ < i′∗. The atom ¬cce(i∗, l∗, j∗) is in the set A by

construction.

Rules of group [(7)]: If the rule is in ΠA
direct, then ¬cce(i∗, l∗, j∗) 6∈ A. If pcce(i∗, l∗, j∗)

inA, then ε∗i is a possibly causing compound event of l∗ for transition state σj∗ of ρ. Because

¬cce(i∗, l∗, j∗) 6∈ A, there there is no possibly causing compound event εi′∗ in ρ such that i∗ < i′∗.

By Definition 6, ε∗i is a causing compound event of l∗ for transition state σj∗ of ρ. By construction

of A, A contains an atom cce(i∗, l∗, j∗).

Rules of group [(8)]: If the body is satisfied in A, then there exists an elementary event e∗ ∈ εi∗ of ρ

and a dynamic law d∗ : e∗ causes l∗ if ω∗ and ω∗ ⊆ σi∗ . By the definition of direct effects in AL, l∗

is in the set E(e∗, σ∗i). Therefore, A contains the atom directEffect(l∗, e∗, i∗) by construction.

Rules of group [(9)]: If the atoms cce(i∗, l∗, j∗) and directEffects(l∗, e∗, i∗) are in A, then εi∗ is

a causing compound event of l∗ for transition state σj∗ of θ in ρ and l∗ ∈ E(e∗, σi∗) for the

elementary event e∗ ∈ εi∗ . By Definition 7, e∗ ∈ εi∗ is a direct cause of l∗ for σj∗ . Finally,

directCause(e∗, i∗, l∗, j∗) is in the set A by construction. We have now proven that A is closed

under every rule of ΠA
direct.

A is the minimal set closed under the rules of ΠA
direct. We will prove this by assuming that there ex-

ists a set B ⊆ A such that B is closed under the rules of ΠA
direct, and by showing that B = A. Our

approach will be to show that whenever the head of a rule is in A, the body is in B. Then, because

the body is in B and from the fact that B is closed under the rules of the program, it follows that

the head is also in B. We will demonstrate this for every rule of the program and conclude that A

and B contain the same atoms.

First, the set α(ψ) ∈ B since these are the facts of ΠA
direct.

CHAPTER 5: IMPLEMENTATION 5.2 THEORETICAL RESULTS

63

Rules of group [2]: It is possible to apply the Splitting Set Theorem [56, 57] to Πdirect so that the

bottom of the program corresponds to α(SD,ΓD) from [43]. The restriction of A to the signature

of α(SD,ΓD) is an answer set of α(SD,ΓD) by Theorem 1 from [43] and therefore is minimal. This

tells us that whenever the literals of the form holds(·, ·), occurs(·, ·), step(·), next(·, ·), prec h(·, ·),

and all h(·, ·, ·) are in A, then must also be in B.

Rules of group [8]: If the head is in A, then by supportedness the body is also in A. By Theorem

1 of [43], we know that the body is also in B because the atoms are formed from the signature of

α(SD,ΓD). Because B is closed under the reduct, the head must also be in B.

Rules of group [4]: If the head of the rule is in A, then by supportedness, the body is in A. Because

the facts of A and B coincide, the body is also in B. By closedness of B, the head is also in B.

Rules of group [3]: If the head of the rule is in A, then again by supportedness, the body is in A. Be-

cause we have already demonstrated for rules of group 4 that literals of form ¬occSat(·, ·) coincide

in A and B, then the body is also in B. Because B is closed under the reduct, the head must also be

in B.

Leveraging this observation about literals of form transitionState(·, ·) coinciding in A and B, we

can similarly prove that the coincidence property holds for rules of group 5. Finally, the property

holds trivially for rules of groups 6,7, and 9.

We have just proven that for every rule r of the reduct, if head(r) belongs to A, then head(r)

belongs to B. By the supportedness property, every literal l ∈ A must be in the head of some rule.

Hence, all literals of A also belong to B. Therefore, A = B. We have proven that A is the minimal

set of atoms closed under the rules of the reduct ΠA
direct.

CHAPTER 5: IMPLEMENTATION 5.2 THEORETICAL RESULTS

64

Right-to-left.

Let A be an answer set of Πdirect. We will show that when the atom directCause(e, i, l, j) is in A,

then e ∈ εi is a direct cause for the literal l holding in the transition state σj of θ from ψ.

Because A is an answer set of Πdirect, A is also an answer set of the reduct ΠA
direct. Let us con-

sider groups 1 through 9 defined earlier as the reduct.

Rules of group (1): obvious.

Rules of group (2): The conclusion follows from Theorem 1 from [43].

Consider first rules of group 9. If the atom directCause(e∗, i∗, l∗, j∗) belongs to A, then there

must be at least one rule in group (9) whose body is satisfied by A by the supportedness property.

Therefore, the atom cce(i∗, l∗, j∗) and at least one atom directEffect(l∗, e∗, i∗) are in A.

Consider now the rules of group 8. We have already concluded that there exists at least one lit-

eral directEffect(l∗, e∗, i∗) must be in A. Hence, there must be at least one rule in group (9) whose

body is satisfied by A. From Theorem 1 of [43], we conclude that there is a dynamic law whose

preconditions are satisfied in state σi∗ and whose event belongs to εi∗ . By definition of the direct

effects of elementary event e∗ occurring in state σi∗ , l∗ belongs to E(e∗, σi∗) (and E(εi∗ , σi∗)).

In the case of rules of group 7, recall that we have earlier concluded that cce(i∗, l∗, j∗) must be in

A. By supportedness, pcce(i∗, l∗, j∗) ∈ A and, by construction of the reduct, ¬cce(i∗, l∗, j∗) 6∈ A. For

rules of group 5, we can similarly conclude that literals transitionState(o∗, i∗) and transitionState

(theta, j∗) are in A. Moreover, by the rules of group 3, ¬ocSat(o∗, i′∗), and ¬ocSat(theta, j′∗) are in

A, while the literals ¬ocSat(o∗, i∗) and ¬ocSat(theta, j∗) are not.

CHAPTER 5: IMPLEMENTATION 5.2 THEORETICAL RESULTS

65

Consider now the rules of group 4. Because we know that ¬ocSat(o∗, i′∗) is in A, then the body

of the corresponding rule of this group must be satisfied in A, including the literal holds(l∗, i′∗). By

the problem translation α(ψ), l∗ ∈ σi′∗ , which can also be written as and l∗ 6∈ σi′∗ . Also by α(ψ), we

know that l∗ is a member of outcome o∗, and because l∗ 6∈ σi′∗ it must also be true that o∗ 6⊆ σi′∗ .

Therefore, the condition in Definition 4 that outcome o∗ 6⊆ σi′∗ is satisfied when considering a pos-

sible transition state σi∗ of o∗.

Recall that if a rule of group 3 is in ΠA
direct, then the corresponding literal ¬ocSat(o∗, j∗) is not

in A. From the problem translation, step(j∗) and inOutcome(o∗, l∗) are facts in A. With these con-

ditions in mind and looking again at rules in group 4, we see that holds(l∗, j∗) must not be in A

for any l∗ such that inOutcome(l∗, o∗), otherwise ¬ocSat(o∗, j∗) would be in A, which would be

a contradiction. By the problem translation and the semantics of AL, it must be that l∗ ∈ σj∗ for

every l∗ ∈ o∗, hence o∗ ⊆ σj∗ . From our earlier conclusion and the fact that ¬ocSat(o∗, j′∗) ∈ A, we

get that o∗ 6⊆ σj′∗ , and therefore the conditions of Definition 4 are satisfied for outcome o∗ and state

σj∗ in ρ, hence σi∗ is a transition state of o∗ in ρ. At this point, we have shown that when literal

transitionState(o∗, j∗) is in A, then σj∗ is a transition state of o∗ in ρ.

Going back to rules of group 5, the literal pcce(i∗, l∗, j∗) is in A when A also contains literals

step(i∗), step(j∗), transitionState(olit(l∗), i′∗) and transitionState(theta, j∗) such that i′∗ = i∗ + 1

and i∗ < j∗. From our earlier conclusions and by the translation of ψ, we know that σi′∗ is a transi-

tion state of {l∗} and σj∗ is a transition state of θ. The conditions of Definition 5 are met in this case

and we conclude that the compound event εi∗ in ρ is a possibly causing compound event of l∗ for

the transition state σj∗ of θ whenever pcce(i∗, l∗, j∗) is in A.

Returning to the rules of group 6, the literal ¬cce(i∗, l∗, j∗) ∈ Awhen pcce(i∗, l∗, j∗) and pcce(i′∗,

l∗, j∗) are in A such that i∗ < i′∗. From our earlier conclusions, ε∗i and ε′∗i are both possibly causing

CHAPTER 5: IMPLEMENTATION 5.2 THEORETICAL RESULTS

66

compound events of l∗ for transition state σj∗ of the outcome o∗. However, the conditions of Defi-

nition 6 are violated due to the inequality of i∗ < i′∗. Therefore, ε∗i cannot be a causing compound

event of l∗ for the transition state σj∗ of θ whenever ¬cce(i∗, l∗, j∗) ∈ A.

Considering again the rules of group 7, the literal cce(i∗, l∗, j∗) is in A when pcce(i∗, l∗, j∗) is in

A and ¬cce(i∗, l∗, j∗) is not in A. We know from our earlier conclusions that ε∗i is a possibly causing

compound event of l∗ for transition state σj∗ of the outcome o∗ and that it does not violate the con-

dition of Definition 6 that there is no other possibly causing compound event for l∗ occurring after

εi∗ and before σj∗ . Therefore, εi∗ is a causing step of l∗ for transition state σj∗ of θ in ρ whenever

pcce(i∗, l∗, j∗) is in A and ¬cce(i∗, l∗, j∗) is not in A.

Finally, we consider once more the rules of group 9. The literal directCause(e∗, i∗, l∗, j∗) is in A

whenever directEffect(l∗, e∗, i∗) and cce(i∗, l∗, j∗) is inA. We also know that when directEffect(l∗, e∗, i∗)

is in A, then l∗ ∈ E(e∗, σi∗). We also know that when cce(i∗, l∗, j∗) is in A, then εi∗ is a causing com-

pound event of l∗ for the transition state σj∗ for outcome θ. In this case, the conditions of Definition

7 are satisfied and therefore the elementary event e∗ ∈ ε∗i is a direct cause of l∗ for the transition

state σj∗ of θ in ρ when the literal directCause(e∗, i∗, l∗, j∗) is in A.

Next we, state and prove soundness and completeness of Πindirect.

Theorem 2. Let ψ = 〈θ, ρ,AD〉 be a problem, εi be a compound event in ρ, σj be a transition state

of θ in ρ, l be a literal in θ, and Πψ be a problem translation of ψ. Given the program Πindirect =

Πψ ∪ ΠAL ∪ ΠT ∪ ΠC ∪ ΠI , compound event ε ∈ εi is a indirect cause of l holding in σj if-and-only-

if the atoms indirectCause(c, i, l, j) and subset(c, i) are in the answer set of Πindirect, as well as an atom

inSubset(e, c) for every e ∈ ε.

Proof. Left-to-right.

We begin by characterizing an answer set A of Πindirect containing an atom indirectCause(c, i, l, j):

The answer set first contains the problem translation set α(ψ).

CHAPTER 5: IMPLEMENTATION 5.2 THEORETICAL RESULTS

67

• Next, A contains an atom of form transitionState(theta, j∗) for every transition state σj∗ of θ

in ρ,

• and an atom transitionState(olit(l∗), i∗) for every transition state σ∗i of the singleton set {l∗}

for l∗ ∈ θ.

• A also contains an atom ¬ocSat(theta, i∗) for each state σi∗ in ρ such that θ 6⊆ σ∗i .

• Similarly, for l∗ ∈ θ where {l∗} 6⊆ σt∗ in ρ, A contains an atom ¬ocSat(olit(l∗), t∗).

• Given a literal l∗ ∈ θ and a transition state σj∗ of θ in ρ, A contains an atom pcce(i∗, l∗, j∗) for

every possibly causing compound event εi∗ of {l∗} for σj∗ .

• Given possibly causing compound events εi∗ and εi′∗ of {l∗} for σj∗ , A contains an atom

¬cce(i∗, l∗, j∗) when i∗ < i′∗.

• A also contains an atom cce(i∗, l∗, j∗) for every causing compound event ε∗i of a literal l∗ ∈ θ

for a transition state σ∗j of θ.

• For every literal l∗ ∈ E(e∗, i∗) where elementary event e∗ occurs at i∗ in ρ, A also contains an

atom directEffect(l∗, e∗, i∗).

• A contains an atom preservedPrec(s∗, l′∗, i′∗) for every state constraint s∗ and σi′∗ such that

prec(s∗) ⊆ σi′∗ and l∗ ∈ I(s∗, σi∗).

• A contains an atom directlyCausedPrec(s∗, λ(k∗, i∗), l′∗, i′∗) for every state constraint s∗, state

σi′∗ , and compound event εk∗ ⊆ εi∗ such that prec(s∗) ⊆ σi′∗ and l′∗ ∈M(s∗, εk∗ , σi′∗).

• A also contains an atom chain(λ(k∗, i∗), l∗, i′∗) for every static chain χ(εk∗ , l
∗, σi′∗).

• an atom gamma(n∗, nil, λ(k∗, i∗), l∗, i′∗) for the static chain χ(εk∗ , l
∗, σi′∗)

• For every link γ∗g in a static chain χ(εk∗ , l
∗, σi′∗), A contains the following:

– an atom gamma(g∗, s∗, λ(k∗, i∗), l∗, i′∗) for every state constraint s∗ in γj′∗

– an atom consquenceOfGamma(l′∗, g∗, λ(k∗, i∗), l∗, i′∗) for every l′∗ ∈ C(γg∗)

CHAPTER 5: IMPLEMENTATION 5.2 THEORETICAL RESULTS

68

– an atom preconditionOfGamma(p′∗, g∗, λ(k∗, i∗), l∗, i′∗) for every l′∗ ∈ P (γg∗)

– an atom causedByGamma(s∗, l′∗, g∗, λ(k∗, i∗), l∗, i′∗) for every state constraint s∗ ∈ γg∗

and l′∗ ∈ prec(s∗)

• Given a chain χ(εk∗ , l
∗, σi′∗) = 〈γ1, . . . , γn′∗〉, A contains the atom contributed(e∗, p′∗, λ(k∗,

i∗), l∗, i′∗) when p′∗ ∈ P ({γ1, . . . , γn∗}), e∗ ∈ ε∗i , and p′ ∈ E(e∗, σi∗−1).

• Given a chain χ(εk∗ , l
∗, σi′∗) = 〈γ1, . . . , γn∗〉, A contains an atom extraEvents(λ(k∗, i∗), l∗,

σi′∗) if there is some e∗ ∈ εk∗ such that E(e∗, σi∗) ∩ P ({γ1, . . . , γn∗}) = ∅.

• Finally, the set A contains an atom indirectCause(λ(k∗, i∗), i∗, l∗, j∗) for every compound

event εk∗ ⊆ εi∗ that is an indirect cause of l∗ for transition state σj∗ of θ.

Let us show that if ε′ is an indirect cause of l holding in σj , then A is an answer set of Πindirect by

proving that A is the minimal set of atoms closed under the rules of the reduct ΠA
indirect. As in the

proof of Theorem 1, we give a simplified form of the reduct where the occurrences of atoms of the

form next(i, j) have been unfolded into expressions j = i+ 1. ΠA
indirect contains:

1. set α(ψ)

2. all rules in ΠAL

3. rules of type (3) through (8) in the reduct ΠA
direct from Theorem 1.

4. a rule of the form

preservedPrec(s∗, l′∗, i′∗)← s law(s∗), prec h(s∗, i′∗),

prec(s∗, x∗, l′∗), holds(l′∗, i∗),

i′∗ = i∗ + 1.

for all state constraints s∗, fluent literals l∗, and integers i∗, i′∗, and x∗.

CHAPTER 5: IMPLEMENTATION 5.2 THEORETICAL RESULTS

69

5. a rule of the form

directlyCausedPrec(s∗, c∗, l∗, i′∗)← s law(s∗), prec h(s∗, i∗), inSubset(e∗, c∗),

prec(s∗, x∗, l′∗), directEffect(l∗, e∗, i∗),

holds(l∗, i∗), i′∗ = i∗ + 1.

for all state constraints constraints s∗, fluent literals l∗, elementary events e∗, subsets c∗, and

integers i∗, i′∗, and x∗.

6. a rule of the form

gamma(1, s∗, c∗, l∗, i′∗)← subset(c∗, i∗), holds(l∗, i′∗), s law(s∗),

prec h(s∗, i′∗), i′∗ = i∗ + 1,

#count{l∗1 : preservedPrec(s∗, l∗1, i
′∗)} = n∗1,

#count{l∗2 : directlyCausedPrec(s∗, c∗, l∗2, i
′∗)} = n∗2,

n∗2 > 0,

#count{l∗3 : prec(s∗, x∗, l∗3), l∗3! = nil} = n∗3,

n∗3 = n∗1 + n∗2.

for all state constraints constraints s∗, fluent literals l∗, elementary events e∗, subsets c∗, and

integers i∗, i′∗,g∗ l∗1 , l∗2 , l∗3 , n∗1, n∗2, n∗3, and x∗.

CHAPTER 5: IMPLEMENTATION 5.2 THEORETICAL RESULTS

70

7. a rule of the form

gamma(g∗ + 1, s∗, c∗, l∗, i′∗)←subset(c∗, i∗), holds(l∗, i′∗), s law(s∗),

prec h(s∗, i′∗), i′∗ = i∗ + 1,

gamma(g∗, x∗, c∗, l∗, i′∗),

#count{l∗1 : preservedPrec(s, l∗1, i
′∗)} = n∗1,

#count{l∗2 : directlyCausedPrec(s∗, c∗, l∗2, i
′∗)} = n∗2,

#count{l∗3 : causedByGamma(s∗, l∗3, g
∗, c∗, l∗, i′∗)} = n∗3,

n∗3 > 0,

#count{l∗4 : causedByGamma(s∗, l∗4, g
′∗, c∗, l∗, i′∗),

g′∗ <= (g∗ − 1)} = n∗4,

#count{l∗5 : prec(s∗, x∗, l∗5, l
∗
5 ! = nil} = n∗5,

n∗5 = n∗1 + n∗2 + n∗3 + n∗4,

for all state constraints constraints s∗, fluent literals l∗, elementary events e∗, subsets c∗, and

integers i∗, i′∗, l∗1 , l∗2 , l∗3 , l∗4 , l∗5 , n∗1, n∗2, n∗3, n∗4, n∗5, g∗, and x∗ such that consequenceOfGamma(l∗,

g∗, c∗, l∗, i∗) is not in A.

8. a rule of the form

consequenceOfGamma(l′∗, g∗, c∗, l∗, i′∗)← gamma(g∗, s∗, c∗, l∗, i′∗), head(s∗, l′∗).

for all state constraints s∗, fluent literals l∗ and l′∗, subsets c∗, and integers i∗ and g∗.

9. a rule of the form

preconditionOfGamma(p∗, g∗, c∗, l∗, i′∗)← gamma(g∗, s∗, c∗, l∗, i′∗),

prec(s∗, x∗, p∗), p∗! = nil.

CHAPTER 5: IMPLEMENTATION 5.2 THEORETICAL RESULTS

71

for all state constraints s∗, fluent literals l∗ and p∗, subsets c∗, and integers i∗, g∗, and x∗.

10. a rule of the form

causedByGamma(s∗, l′∗, g∗, c∗, l∗, i′∗)← s law(s∗), prec h(s∗, i′∗),

prec(s∗, x∗, l′∗),

consequenceOfGamma(l′∗, g∗, c∗, l∗, i′∗).

for all state constraints s∗, fluent literals l∗ and l′∗, subsets c∗, and integers i∗, g∗, and x∗.

11. a rule of the form

chain(c∗, l∗, i′∗)← gamma(n∗, s∗, c∗, l∗, i′∗),

consequenceOfGamma(l∗, n∗, c∗, l∗, i′∗).

for all state constraints s∗, fluent literals l∗, subsets c∗, and integers i∗ and n∗.

12. a rule of the form

contributed(e∗, p∗, c∗, l∗, i′∗)← preconditionOfGamma(p∗, y∗, c∗, l∗, i′∗),

inSubset(e∗, c∗), directEffect(p∗, e∗, i∗),

i′∗ = i∗ + 1.

for all fluent literals l∗ and p∗, subsets c∗, elementary events e∗, and integers i∗, i′∗ and y∗.

13. a rule of the form

extraEventsInSubset(c∗, l∗, i∗)← chain(c∗, l∗, i′∗),

inSubset(e∗, c∗),

i′∗ = i∗ + 1. (5.43)

CHAPTER 5: IMPLEMENTATION 5.2 THEORETICAL RESULTS

72

for all fluent literals l∗, subsets c∗, elementary events e∗, and integers i∗, i′∗ and j∗ such that

contributed(e∗, p∗, c∗, l∗, i′∗) 6∈ A.

14. a rule of the form

indirectCause(c∗, i∗, l∗, j∗)← cce(i∗, l∗, j∗),

chain(c∗, l∗, i′∗), i′∗ = i∗ + 1.

for all fluent literals l∗, subsets c∗, and integers i∗, i′∗, and j∗ such that extraEventsInSubset(c∗,

l∗, i′∗) is not in A.

A is closed under ΠA
indirect. We will prove it for every rule of the program.

Rules of group [1]: obvious.

Rules of group [2)]: The conclusion follows from Theorem 1 from [43].

Rules of group [3)]: The conclusion follows from Theorem 1 from this dissertation.

Rules of group [4]: If the body of the rule is in A, then there exists a state constraint s∗ : l∗0 if ω∗ in

AD such that ω∗ ⊆ σi′∗ and a literal l′∗ ∈ ω∗ such that l′∗ ∈ σi∗ where i′∗ = i∗ + 1. It is straightfor-

ward to verify that l′∗ is also in the set I(s∗, σi′∗). Therefore, the atom preservedPrec(s∗, l′∗, i′∗) ∈ A

by construction of A.

Rules of group [5]: If the body of the rule is in A, then there exists a state constraint s∗ : l∗0 if ω∗

in AD such that ω∗ ⊆ σi′∗ , a literal l′∗ ∈ ω∗ such that l∗ ∈ σi∗ where i′∗ = i∗ + 1, and a subset ek∗

corresponding to the subset identifier c∗ such that l′∗ ∈ E(ek∗ , σi∗). It is straightforward to verify

that l′∗ ∈ D(s∗, σi∗). By construction ofA, the atom directlyCausedPrec(s∗, λ(k∗, i∗), l′∗, i′∗) is inA.

CHAPTER 5: IMPLEMENTATION 5.2 THEORETICAL RESULTS

73

Rules of group [6]: If the body of the rule is inA, then there exists a state constraint s∗ : l′∗ if ω∗ such

that prec(s∗) ∈ σi′∗ , a subset λ(k∗, i∗) corresponding to identifier c∗, and i′∗ = i∗+ 1. If line 3 of this

rule is satisfied, then the cardinality of the set of atoms in A of form preservedPrec(s∗, l∗1, i
′∗) is n∗1.

Similarly, if line 4 is satisfied, then the cardinality of the set of atoms in A of form directlyCaused−

Prec(s∗, c∗, l∗1, i
′∗) is n∗2, where n∗2 > 0, and if line 6 is satisfied then the cardinality of the set of

atoms in A of form prec(s∗, x∗, l∗3) is n∗3. Finally, if line 7 is satisfied, then n∗3 = n∗1 + n∗2. Re-

call that l′∗ ∈ I(s∗, σi′∗) when preservedPrec(s∗, l′∗, i′∗) and a literal l′∗ ∈ M(s∗, c∗, i′∗) when

directlyCausedPrec(s∗, c∗, l′∗, i′∗) in A. We conclude that Condition 1 of Definition 9 is satisfied

and there is a link γ1 in the static chain χ(c∗, l∗, i′∗) which contains a state constraint s∗ for every

atom in A of the form gamma(1, s∗, c∗, l∗, i′∗).

Rules of groups [7], (8), and (10): Leveraging what we concluded about rule of group (6), one can

check by induction that A is closed under the rules of these groups.

Rules of group [11]: If the body is satisfied, it means that there is some γn∗ in the static chain

χ(c∗, l∗, i′∗) and l′∗ belongs to the set C(γn∗). By Definition 9, we have shown that this is a static

chain, and therefore the head is in A by α(ψ).

Rules of group [12]: It the body of this rule is satisfied then there is a subset an elementary event

e∗ ⊆ εk∗) (via subset identifier c∗) such that p∗ ∈ E(e∗, σi∗). Leveraging reasoning similar to that

used for proving closure for rules of group [8], we see that for rules of group [9], if preconditionOf

Gamma(p∗, g∗, c∗, l∗, i′∗) is in A, then p∗ ∈ P (γg∗) in the static chain χ(c∗, l∗, i∗) where i′∗ = i∗ + 1.

If line 1 of this rule is satisfied, then e∗ directly caused p∗ ∈ P ({γ1, . . . , γy∗ , . . . , γn∗}) to hold. By

construction of A, contributed(e∗, p′∗, c∗, l∗, i′∗) ∈ A.

Rules of group [13]: If the rule is in A, then contributed(e∗, p′∗, λ(k∗, i∗), l∗, i′∗) is not in A. If

the body of the rule is satisfied, conclusions from earlier considered groups can be leveraged

CHAPTER 5: IMPLEMENTATION 5.2 THEORETICAL RESULTS

74

to conclude that there is an elementary event e∗ ∈ εk∗ , where εk∗ ⊆ εk∗ , such that E(e∗, σi∗) ∩

P ({γ1, . . . , γn∗}) = ∅. By construction of A, the atom extraEvents(λ(k∗, i∗), l∗, σi′∗) is in A.

Rules of group [14]: If the rule is in A, then extraEvents(λ(k∗, i∗), l∗, σi′∗) is not in A, satisfying

condition 2 of Definition 10. If the body is satsified, then εk∗ ⊆ εi∗ is a causing compound event

of l for the transition state σj∗ of θ in ρ, χ(c∗, l∗, i∗) is a static chain, and i′∗ = i∗ + 1. We conclude

that Condition 1 of Definition 10 is satisfied, hence εk∗ ⊆ εi∗ in ρ is an indirect cause of l∗ for tran-

sition state θ in ρ. The elementary events in εk∗ corresponds to the set of all e∗ such that an atom

inSubset(e∗, c∗) is in A.

A is the minimal set closed under the rules of ΠA
indirect. We will prove this by assuming that there

exists a set B ⊆ A such that B is closed under the rules of ΠA
indirect, and by showing that B = A

using an approach similar to that used in proving Theorem 1.

First, the set α(ψ) ⊂ B since these are the facts of ΠA
indirect.

Rules of group [2]: It is possible to apply the Splitting Set Theorem [56, 57] to Πdirect so that the

bottom of the program corresponds to α(SD,ΓD) from [43]. The restriction of A to the signature

of α(SD,ΓD) is an answer set of α(SD,ΓD) by Theorem 1 from [43] and therefore is minimal. This

tells us that whenever the literals of the form holds(·, ·), occurs(·, ·), step(·), next(·, ·), prec h(·, ·),

and all h(·, ·, ·) are in A, then they must also be in B.

Rules of group [3]: Using reasoning analogous to the proof of Theorem 1 of this dissertation, we

can prove that all atoms in A are also in B for rules of group [3].

Rules of group [4]: If the head of the rule is in A, then by supportedness the body is also satisfied

in A. By Theorem 1 of [43] and because the atoms of A and B coincide, the body is also in the set

B. By closedness of B, the head is also in B.

CHAPTER 5: IMPLEMENTATION 5.2 THEORETICAL RESULTS

75

Rules of group [5]: When the head is in A, then again by supportedness the body must also be

satisfied inA. By Theorem 1 of [43], the facts of α(ψ), and leveraging the observation that the heads

of rules in group [3] coincide in A and B, then the body of rules of this group must also be in B.

Because B is closed under the reduct, the head must also be in B.

Rules of group [6]: If the head of a rule of this group is in the setA, then by supportedness the body

must also be satisfied in A. Using our conclusions about coincidence of heads of rules of groups [4]

and [5], Theorem 1 of [43], and the coincidence of facts in A and B, then the body must also be in

B. By closedness of B, the head must also be in B.

Rules of groups [7], [8], [10[]: Leveraging our conclusions about rules of group [6], the facts coin-

ciding in A and B, and Theorem 1 of [43], it can be verified by induction that the heads of these

rules coincide in groups A and B.

Rules of group [11]: If the head is in A, then the body is satisfied A by supportedness. Using our

conclusions from reasoning about rules of groups rules of groups [6], [7] and [8], the body of the

rule must also be satisfied in B, and the head is in B because it is closed under the reduct.

Rules of group [9]: When the head is in A, then the body must be satisfied in A by supportedness.

Because the facts in α(ψ) and heads of rules of groups [6] and [7] coincide in sets A and B, then the

body is satisfied in B. By closedness, the head is also in B.

Rules of group [12]: If the head is in A, then, again by supportedness, the body must be satisfied

in A. Because the heads of rules in groups [1], [3], and [9] coincide in sets A and B, then the body

must also be satisfied in B. The head is also in B because B is closed under the reduct.

CHAPTER 5: IMPLEMENTATION 5.2 THEORETICAL RESULTS

76

Rules of group [13]: If the head of the rule is in A, then the body is satisfied in A by supportedness.

Because the heads of rules of groups [1], [6], and [7] coincide in A and B, the body is also satisfied

in B. Therefore, by closedness, head must also be in B.

Rules of group [14]: If the head of the rule is in A, then the body must also be satisfied in A. We

know that when cce(i∗, l∗, j∗) is in A it is also in B because of our consideration of rules of group

[3], and we have already concluded that the heads of rules of group [11] coincide in A and B.

Therefore, the body is also in B, and by closedness the head is also in B.

We have just proven that for every rule r of the reduct, if head(r) belongs to A, then head(r)

belongs to B. By the supportedness property, every literal l ∈ A must be in the head of some rule.

Hence, all literals of A also belong to B. Therefore, A = B. We have proven that A is the minimal

set of atoms closed under the rules of the reduct ΠA
indirect.

Right-to-left.

Let A be an answer set of Πindirect and A include atoms indirectCause(c, i, l, j), subset(c, i), as well

as atoms for all elementary events e∗ such that inSubset(e∗, c) ∈ A. We will show then ε′ ∈ εi is an

indirect cause for the literal l holding in the transition state σj of θ from ψ, where ε′ is the set of all e∗.

Because A is an answer set of Πindirect, A is also an answer set of the reduct ΠA
indirect. We will

consider the groups [1] through [14] as the reduct.

Rules of group [1]: obvious.

Rules of group [2]: The conclusion follows from Theorem 1 from [43].

Rules of group [3]: The conclusion follows from Theorem 1 from this dissertation.

CHAPTER 5: IMPLEMENTATION 5.2 THEORETICAL RESULTS

77

Consider first rules of group [14]. If the atom indirectCause(c, i, l, j) is in A, then by construc-

tion of the reduct ΠA
indirect, then extraEventsInSubset(c∗, l∗, i∗) must not be inA. Additionally, the

body of the corresponding rule in group [14] must be satisfied in A by the supportedness property

because A is closed under ΠA
indirect. Therefore, the atoms cce(i∗, l∗, j∗) and chain(c∗, l∗, i′∗) are in

A such that i′∗ = i∗ + 1. Using reasoning analogous to the proof of Theorem 1, i∗ must be a caus-

ing compound event of l∗ for σj∗ because cce(i∗, l∗, j∗) ∈ A. Also, by construction of the reduct,

the atom extraEventsInSubset(c∗, l∗, i′∗) is not in A. Similarly for rules of group [11], we have

already determined that atom chain(c∗, l∗, i′∗) ∈ A, therefore the atoms gamma(1, s∗, c∗, l∗, i′∗) and

consequenceOfGamma(l∗, n∗, c∗, l∗, i′∗) are also in A by supportedness.

Consider now rules of group [6]. We have concluded that the atom gamma(1, s∗, c∗, l∗, i′∗) is

in A. By supportedness, A must include an atom subset(c∗, i∗). There must be a compound event

εk∗ ⊆ εi∗ in the path ρ by construction of the problem translation α(ψ). By the semantics of AL,

there must also be states σi∗ and σi′∗ in ρ. A also includes atom holds(l∗, i′∗) and, by α(ψ), l∗ ∈ σi′∗ .

Now let us consider the #count aggregates from group [6]. Their atoms are obtained from rules

of group [4] and rules of group [5]. For the first group, if preservedPrecs(s∗, l′∗, i′∗) ∈ A, then

by supportedness and from Theorem 1 of [43], we can conclude that there is a state constraint s∗

whose preconditions are satisfied in the state σi′∗ , l′∗ ∈ prec(s∗) and therefore l′∗ ∈ σi′∗ . From the

construction of α(ψ) we can further reason that l′∗ ∈ σi∗ . Because we know that l′∗ ∈ σi′∗ , l′∗ ∈ σi∗ ,

and l′∗ ∈ prec(s∗) is also true, we can conclude that l′∗ is in the set of s∗’s preserved preconditions

I(s, σi′∗) if preservedPrecs(s∗, l′∗, i′∗) ∈ A.

For group [5], our earlier conclusions about σi′∗ and εk∗ can be leveraged together with reason-

ing analogous to the proof of Theorem 1 of this dissertation, Theorem 1 from [43], as well as the

translation α(ψ) to conclude that if an atom directlyCausedPrec(s∗, e∗, l′∗, i∗) belongs to A, then

CHAPTER 5: IMPLEMENTATION 5.2 THEORETICAL RESULTS

78

l′∗ ∈ prec(s∗) and l′∗ ∈ E(e∗, σi∗) for every elementary event e∗ ⊆ εk∗ . It can be further reasoned us-

ing these conclusions and the earlier conclusion that l∗ 6∈ σi∗ that l′∗ is a member of the set of s∗’s di-

rectly caused preconditions in σi∗M(s∗, εk∗ , σi′∗) when the atom directlyCausedPrec(s∗, e∗, l′∗, i∗) ∈

A.

Returning to rules of group [6], we find that A must also contain atoms s law(s∗), one ore more

atoms of the form prec(s∗, x∗, l′∗) as well as an atom prec h(s∗, i′∗). By Theorem 1 of [43], we can

conclude that there is a state constraint s∗ whose preconditions are satisfied in the state σi′∗ . Next,

recall that by the semantics of the aggregate operator #count, an aggregate literal is satisfied if the

cardinality of its argument with respect to A is equal to the term u of the aggregate atom. Because

we know that the body of this rule is satisfied by supportedness from our earlier consideration

of rules of group [11], it must be the case that A contains n∗3 atoms of the form prec(s∗, x∗, l∗)

such that l∗ 6= nil. Additionally, n∗2 ≥ 1 and therefore there is at least one atom of the form

directlyCausedPrec(s∗, e∗, l′∗, i′∗) in A. We can now reason that if the body of a rule in this group

is satisfied in A, then n∗1 is the cardinality of I(s, σi′∗) from our consideration of rules of group 4, n∗2

is the cardinality of M(s∗, εk∗ , σi′∗) from our consideration of rules of group [5], and n∗3 is the cardi-

nality of atoms prec(s∗, x∗, l′∗) ∈ A by α(ψ). From here, we conclude that Condition 1 of Definition

9 for the chain χ(c∗, l∗, i′∗) is satisfied because there is no overlap among the preconditions of s∗

that have been preserved by inertia and those that have been caused directly. We have shown that

if gamma(1, s∗, c∗, l∗, i′∗) ∈ A, there exists a sequence 〈γ1, · · ·〉 satisfying Condition 1 of Definition

9 and s∗ ∈ γ1.

For rules of group [7], we it can be checked by induction and reasoning analogous to rules of

group [6] that when gamma(g∗, s′∗, c∗, l∗, i′∗) ∈ A, there exists a sequence 〈γ1, . . . , γg∗ , · · ·〉 such that

Condition 2b of Definition 9 is satisfied for the no overlap case1 and that s′∗ ∈ γg∗ . Moreover, we

conclude that when consequenceOfGamma(l′∗, g∗, c∗, l∗, i′∗) and causedByGamma(s∗, l′∗, g∗, l∗, i′∗)

1Recall that testing for such cases is trivial and adding the support to the program does not significantly change the proof
strategy for a similar theorem.

CHAPTER 5: IMPLEMENTATION 5.2 THEORETICAL RESULTS

79

are in A, l′∗ ∈ P (γg∗), where l∗ ∈ prec(s∗).

Considering now rules of group [11], recall that earlier we concluded that chain(c∗, l∗, i∗) is in

A. Therefore, atoms gamma(n∗, s∗, c∗, l∗, i′∗) and consequenceOfGamma(l∗, n∗, c∗, l∗, i∗) are also

inA. As we have concluded above, we know that because these atoms areA, there exists a sequence

〈γ1, . . . , γg∗ , · · ·〉 such that l∗ ∈ C(γg∗) (i.e., l∗ is a consequence of γg∗), making it the final link of the

chain by Definition 9. Therefore, we can conclude that when chain(c∗, l∗, i∗) is in A, there exists a

static chain χ(c∗, l∗, i∗) = 〈γ1, . . . , γn∗〉.

Before returning to rules of group [14], we draw attention to the fact that it is straightforward to

demonstrate by considering rules of groups [9], [12], and [13] that if the atom extraEventsInSubset

(c∗, l∗, i∗) is in A, then there exists at least one elementary event e∗ ∈ ek∗ such that E(e∗, σi∗) ∩

P ({γ1, . . . , γn∗}) 6= ∅. The verification is achieved using similar reasoning as used for earlier con-

sidered groups, Theorem 1 from [43], the construction of the reduct, and the supportedness prop-

erty.

Once more considering rules of group [14], recall that that the atoms cce(i∗, l∗, j∗) and chain(c∗,

l∗, i∗) are in A by supportedness, and that εi must be a causing compound event of l∗ for the

transition state σj of the outcome θ, from reasoning analogous to the proof of Theorem 1 of this

dissertation. From our earlier conclusion, whenever chain(c∗, l∗, i∗) ∈ A, there exists a static chain

χ(c∗, l∗, i∗) = 〈γ1, . . . , γ∗n〉 which satisfies Condition 1 of the definition of indirect cause for com-

pound event ek ∈ εi, literal l∗, and the transition state σj∗ of θ. By construction of the reduct, the

atom extraEventsIn(c∗, i∗, l∗) is not in A, therefore Condition 2 of Definition 10 is satisfied, alow-

ing us to conclude that when the atom indirectCause(c∗, i∗, l∗, j∗) is inA, then the compound event

ek∗ corresponding to c∗ is an indirect cause of l∗ for the transition state σj∗ of θ in ρ.

We have guaranteed the correctness of the implementation for direct cause and the improved

version of indirect cause. Next, we present two examples from Chapter 4 encoded in ASP.

CHAPTER 5: IMPLEMENTATION 5.2 THEORETICAL RESULTS

80

5.3 ASP Examples

5.3.1 Extended Yale Shooting Problem

Next, we present the translation of the problem ψY from Chapter 4 translated to ASP without the

translation of ψY ’s outcome θY = {¬isAlive(turkey)}. We then give the ASP translation θY , θ′Y ,

and θ′′Y , and show that the answer set of Πdirect ∪ α(ψ) unioned with each outcome contains the

expected cause.

YSP Problem Instance α(ψY):

%%%%%% EVENTS %%%%%%

event(handsGun(tommy)).

event(loads(suzy,gun)).

event(shoots(suzy,turkey)).

occurs(handsGunTo(suzy),1).

occurs(loads(suzy,gun),2).

occurs(shoots(suzy,turkey),3).

step(1..4).

subset(c1,1).

inSubset(handsGunTo(suzy),c1).

subset(c2,2).

inSubset(loads(suzy,gun),c2).

subset(c3,3).

inSubset(shoots(suzy,turkey),c3).

%%%%%% STATES %%%%%%

holds(isAlive(turkey),1).

holds(neg(isLoaded(gun)),1).

holds(neg(hasGun(suzy)),1).

holds(isAlive(turkey),2).

holds(isLoaded(gun),2).

holds(neg(hasGun(suzy)),2).

holds(isAlive(turkey),3).

holds(isLoaded(gun),3).

holds(hasGun(suzy),3).

fluent(isAlive(turkey)).

fluent(hasGun(suzy)).

fluent(isLoaded(gun)).

%%%%%% ACTION DESCRIPTION %%%%%%

CHAPTER 5: IMPLEMENTATION 5.3 ASP EXAMPLES

81

d_law(d1).

head(d1,hasGun(suzy)).

event(d1,handsGun(tommy)).

prec(d1,1,nil).

d_law(d2).

head(d2,isLoaded(gun)).

event(d2,loads(suzy,gun)).

prec(d2,1,neg(isLoaded(gun))).

prec(d2,2,nil).

d_law(d3).

head(d3,neg(isAlive(turkey))).

event(d3,shoots(suzy,turkey)).

prec(d3,1,isAlive(turkey)).

prec(d3,2,nil).

d_law(d4).

head(d4,neg(isAlive(turkey))).

event(d4,shoots(suzy,turkey)).

prec(d4,1,isAlive(turkey)).

prec(d4,2,nil).

i_law(im1).

head(im1,neg(isAlive(turkey))).

prec(im1,1,neg(isLoaded(gun))).

prec(im1,2,nil).

The translation of α(θY) of θY = {¬isAlive(turkey)} is:

outcome(theta).

inOutcome(neg(isAlive(turkey)),theta).

outcome(olit(neg(isAlive(turkey)))).

inOutcome(neg(isAlive(turkey)),olit(neg(isAlive(turkey)))).

and the answer set of Πdirect ∪ α(ψY) ∪ α(θY) contains:

directcause(shoots(suzy,turkey),3,neg(isAlive(turkey)),4).

Theorem 1 guarantees that shoots(suzy, turkey) ∈ ε3 is a direct cause of

¬isAlive(turkey) for state σ4. The translation of α(θ′Y) of θ′Y = {isLoaded(gun)} is:

outcome(theta).

inOutcome(neg(isAlive(turkey)),theta).

outcome(olit(neg(isAlive(turkey)))).

CHAPTER 5: IMPLEMENTATION 5.3 ASP EXAMPLES

82

inOutcome(neg(isAlive(turkey)),olit(neg(isAlive(turkey)))).

and the answer set of Πdirect ∪ α(ψY) ∪ α(θ′Y) contains:

directcause(loads(suzy,gun),2,isLoaded(gun),3).

Theorem 1 guarantees that loads(suzy, gun) ∈ ε2 is a direct cause of isLoaded(gun) for state σ3. The

translation of α(θ′′Y) of θ′′Y = {hasGun(suzy)} is:

outcome(theta).

inOutcome(hasGun(suzy),theta).

outcome(olit(hasGun(suzy))).

inOutcome(hasGun(suzy),olit(hasGun(suzy))).

and the answer set of Πdirect ∪ α(ψY) ∪ α(θ′′Y) contains:

directcause(handsGun(tommy),1,hasGun(suzy),2).

Theorem 1 guarantees that handsGun(tommy) ∈ ε1 is a direct cause of hasGun(suzy) for state σ3.

5.3.2 Self-driving Car Problem

Next, we present the translation of the problem ψS from Chapter 4 translated to ASP without the

translation of ψS ’s outcome θS = {¬error(crash)}. We then give the ASP translation θS , θ′S , and

θ′′S . Finally, we show that the answer set of Πindirect ∪ α(ψ) unioned with α(thetaS) contains the

expected cause, and similarly that Πdirect ∪ α(ψ) unioned with the translations of α(θ′S) and α(θ′′S)

contain the expected causes.

Self-driving Car Problem Instance α(ψS):

%%%%%% EVENTS %%%%%%

occurs(report(obst,o1),1).

occurs(report(analyze,d1),1).

occurs(report(d(accel),d1),2).

occurs(report(analyze,o1),2).

occurs(report(obst,o2),3).

occurs(report(analyze,d2),3).

occurs(report(act(accel),c1),3).

CHAPTER 5: IMPLEMENTATION 5.3 ASP EXAMPLES

83

event(report(obst,o1)).

event(report(analyze,d1)).

event(report(d(accel),d1)).

event(report(analyze,o1)).

event(report(obst,o2)).

event(report(analyze,d2)).

event(report(act(accel),c1)).

step(1..4).

subset(c1,1).

inSubset(report(obst,o1),c1).

subset(c2,1).

inSubset(report(analyze,d1),c2).

subset(c3,1).

inSubset(report(obst,o1),c3).

inSubset(report(analyze,d1),c3).

subset(c4,2).

inSubset(report(analyze,o1),c4).

subset(c5,2).

inSubset(report(d(accel),d1),c5).

subset(c6,2).

inSubset(report(analyze,o1),c6).

inSubset(report(d(accel),d1),c6).

subset(c7,3).

inSubset(report(obst,o2),c7).

subset(c8,3).

inSubset(report(act(accel),c1),c8).

subset(c9,3).

inSubset(report(analyze,d2),c9).

subset(c10,3).

inSubset(report(obst,o2),c10).

inSubset(report(act(accel),c1),c10).

subset(c11,3).

inSubset(report(obst,o2),c11).

inSubset(report(analyze,d2),c11).

subset(c12,3).

inSubset(report(act(accel),c1),c12).

inSubset(report(analyze,d2),c12).

subset(c13,3).

inSubset(report(obst,o2),c13).

CHAPTER 5: IMPLEMENTATION 5.3 ASP EXAMPLES

84

inSubset(report(act(accel),c1),c13).

inSubset(report(analyze,d2),c13).

%%%%%% STATES %%%%%%

holds(neg(error(crash)),1).

holds(neg(infer(crash)),1).

holds(neg(known(obst)),1).

holds(neg(mustAct(accel)),1).

holds(obst(o1),1).

holds(obst(o2),1).

holds(dec(d1),1).

holds(dec(d2),1).

holds(control(c1),1).

holds(neg(error(crash)),2).

holds(neg(infer(crash)),2).

holds(known(obst),2).

holds(neg(mustAct(accel)),2).

holds(obst(o1),2).

holds(obst(o2),2).

holds(dec(d1),2).

holds(dec(d2),2).

holds(control(c1),2).

holds(neg(error(crash)),3).

holds(neg(infer(crash)),3).

holds(known(obst),3).

holds(mustAct(accel),3).

holds(obst(o1),3).

holds(obst(o2),3).

holds(dec(d1),3).

holds(dec(d2),3).

holds(control(c1),3).

holds(error(crash),4).

holds(infer(crash),4).

holds(known(obst),4).

holds(mustAct(accel),4).

holds(obst(o1),4).

holds(obst(o2),4).

holds(dec(d1),4).

holds(dec(d2),4).

holds(control(c1),4).

fluent(dec(d2)).

fluent(infer(crash)).

fluent(obst(o1)).

fluent(obst(o2)).

fluent(error(crash)).

fluent(control(c1)).

fluent(known(obst)).

fluent(dec(d1)).

fluent(mustAct(accel)).

CHAPTER 5: IMPLEMENTATION 5.3 ASP EXAMPLES

85

%%%%%% ACTION DESCRIPTION %%%%%%

d_law(d1).

head(d1,known(obst)).

event(d1,report(obst,o1)).

prec(d1,1,obst(o1)).

prec(d1,2,nil).

d_law(d2).

head(d2,mustAct(accel)).

event(d2,report(d(accel),d1)).

prec(d2,1,dec(d1)).

prec(d2,2,nil).

d_law(d3).

head(d3,infer(crash)).

event(d3,report(act(accel),c1)).

prec(d3,1,known(obst)).

prec(d3,2,nil).

s_law(s1).

head(s1,error(crash)).

prec(s1,1,infer(crash)).

prec(s1,2,nil).

The translation of α(θS) of θY = {error(crash)} is:

outcome(theta).

inOutcome(error(crash),theta).

outcome(olit(error(crash))).

inOutcome(error(crash),olit(error(crash))).

and the answer set of Πindirect ∪ α(ψY) ∪ α(θY) contains:

indirectcause(c8,3,error(crash),4).

inSubset(report(act(accel),c1),c8).

Theorem 2 guarantees that {report(act(accel, c1)} ⊂ ε3 is an indirect cause of error(crash) for state

σ4. The translation of α(θ′S) of θ′S = {mustAct(accel)} is:

outcome(theta).

inOutcome(mustAct(accel),theta).

outcome(olit(mustAct(accel))).

inOutcome(mustAct(accel),olit(mustAct(accel))).

CHAPTER 5: IMPLEMENTATION 5.3 ASP EXAMPLES

86

and the answer set of Πdirect ∪ α(ψY) ∪ α(θ′Y) contains:

directcause(report(d(accel),d1),2,mustAct(accel),3).

Theorem 1 guarantees that report(d(accel), d1) ∈ ε2 is an indirect cause of

mustAct(accel) for state σ3. Finally, the translation of α(θ′′S) of θ′′S = {mustAct(accel)} is:

outcome(theta).

inOutcome(known(obst),theta).

outcome(olit(known(obst))).

inOutcome(known(obst),olit(known(obst))).

and the answer set of Πdirect ∪ α(ψY) ∪ α(θ′′Y) contains:

directcause(report(obst,o1),1,known(obst),2).

Theorem 1 guarantees that report(obst, o1) ∈ ε1 is an indirect cause of known(obst) for state σ2. For

both of the above examples, the implementations return answers that are in line both with intuition

and the results of the theoretical framework.

In this chapter, we presented an implementation of the theoretical framework, proved the

soundness and completeness of the implementation for the definition of direct cause and the im-

proved definition of indirect cause. We have also presented the ASP encodings of the extended

Yale Shooting Problem and the self-driving car example from Chapter 4. We next explore the im-

plementation’s practical feasibility in a series of empirical studies of its performance for a number

of interesting challenges.

CHAPTER 5: IMPLEMENTATION 5.3 ASP EXAMPLES

87

Chapter 6: Empirical Studies

In this section we present results from empirical studies aiming to assess the practical feasibility of

the approach with respect to time. We believe that it is important to To the best of our knowledge,

there is no established set of benchmarks for the type of reasoning presented in this dissertation,

and so we have generated a set of novel problem instances that allow us to examine and make

initial conclusions about the performance of the implementation on a number of interesting cases.

The first three experiments test the implementation on two types of automatically generated

problem instances. In the first type of problem, N events occur simultaneously in the first step and

cause N literals that do not hold in the first step to hold in the subsequent step. We refer to a set

of causes occurring under these conditions as fully concurrent. In the second type of problem, N

events occur over N steps (one per step), causing N literals that do not hold in the first step to hold

by the N + 1’th step. We refer to these cases as strict sequences. We generate fully concurrent and

strict sequence cases for direct and indirect causes, and for each case we want to explain how all

N literals have been made to hold in the final step of the path. In these cases, all static chains of

indirect causes are of length 1.

In the fourth and fifth experiments, we test the implementation on two additional types of

automatically generated problem instances where static chains have length greater than or equal

to 1. In the first type, one event occurs in the first step and indirectly causes a single literal to hold

in in the next step via a static chain of length C. We refer to this case as a single-source chain. In the

second type, N events occur simultaneously in the first state, each of which sets off a unique “chain

reaction”, the ramifications of the N events occurring together cause a single literal to hold in the

subsequent state, and we refer to this case as a multi-source or N -source chain.

88

6.1 Full Concurrency and Strict Sequences

In the first group of experiments, we compare the time required to compute direct and indirect

causes for increasingly large instances of fully concurrent and strict sequence cases.

6.1.1 Setup

Given a value N , 4N problem instances for this experiment are generated as follows:

1. Fully Concurrent Direct Cause (FCDC): For every value in {1, . . . , N}, a problem instance is

generated with N events, N fluents, and one dynamic law for each of the N events, the heads

of which are non-negated literals corresponding the theN fluents. In other words, each event

directly causes a single literal to hold in the subsequent state. All fluents are negated in step

1 of the path. All N events occur at step 1 of the path, and all N fluents are non-negated in

step 2. The outcome consists of the literals in step 2.

2. Strict Sequence Direct Cause (SSDC): For every value in {1, . . . , N}, a problem instance is gen-

erated in a similar way to FCDC instances, except that in this case the path consists of N + 1

steps, with theN th event occurring at theN th step. As before, all fluents are initially negated,

and all have become non-negated by the N + 1th step, and the outcome again consists of the

literals of the N + 1th step.

3. Fully Concurrent Indirect Cause (FCIC): For every value in {1, . . . , N}, a problem instance is

generated with a similar structure to that of the FCDC problems. In this case, however, 2N

fluents are created, half of which correspond to the direct effects of events the N events, and

the other half of which correspond to indirect effects of those events. For every event N ,

there exists a dynamic law whose head is the precondition of a state constraint. The outcome

contains the heads of all state constraints, and all 2N fluents are initially negated.

4. Strict Sequence Indirect Cause (SSIC): For every value in {1, . . . , N}, a problem instance is cre-

ated with a similar structure to SSDC, with the addition of the characterization of indirect

effects via dynamic laws and state constraints from FCIC cases.

CHAPTER 6: EMPIRICAL STUDIES 6.1 FULL CONCURRENCY AND STRICT SEQUENCES

89

Figure 6.1: Comparing the time to explain up to and including 15 literals for all fully concurrent
and strict sequence cases (direct and indirect)

6.1.2 Experiment 1

As a result of testing several values of N for Experiment 1, we find that the most insight is gained

when examining the results when N = 15.

Results. The approach takes approximately 700 seconds to explain 15 literals caused by 15 con-

current indirect causes (FCIC), and less than 0.1 seconds to explain 15 literals for the remain-

ing three cases (FCDC, SSDC, FCIC). This can be explained by the fact that in the FCIC case,

2N = 215 = 32, 768 sets need to be considered as potential indirect causes for each of the 15 lit-

erals, whereas in the SSIC case only one set needs to be considered as an indirect cause at each of

the 15 steps. It also makes sense that the FCIC case overtakes both direct cause cases because testing

for direct effects of events via dynamic laws that apply in a particular transition ostensibly requires

less time than is needed generating and testing potential static chains that would explain indirect

causation. This is likely because when looking for static chains, both dynamic laws and state con-

straints need to be considered to find the first link of a chain and then the heads of state constraints

CHAPTER 6: EMPIRICAL STUDIES 6.1 FULL CONCURRENCY AND STRICT SEQUENCES

90

Figure 6.2: Comparing the time to explain up to and including 100 literals for fully concurrent
direct cause (FCDC), single sequence direct cause (SSDC), and single sequence indirect cause
(SSIC).

in the first link must tested for connections to the preconditions of additional state constraints until

either an outcome literal is found (indicating that it has been indirectly caused) or until the space

of state constraints has been exhausted.

6.1.3 Experiment 2

In the second experiment, we compare the time required to computed SSIC, FCDC, and SSDC

cases with the goal of gaining insight into the relative performance of the approach on these cases

for larger values of N . The setup for Experiment 2 is nearly identical to experiment 1, with the

exclusion of problem instances for the FCIC case. Therefore, given a valueN , 3N problem instances

are created corresponding to the remaining three cases. As a result of testing several values ofN for

Experiment 2, we find that significant insight is gained when examining the results when N = 100.

Results. The approach takes approximately 114 seconds to explain 100 literals caused by 100 in-

direct causes occurring in a strict sequence (SSIC), approximately 87 seconds to explain 100 liter-

als caused by 100 concurrent direct causes, and approximately 0.03 seconds to explain 100 literals

CHAPTER 6: EMPIRICAL STUDIES 6.1 FULL CONCURRENCY AND STRICT SEQUENCES

91

Figure 6.3: Observing the time required to explain up to and including 1000 literals for fully
concurrent direct causes (FCDC).

caused by 100 direct causes occurring in a strict sequence. It makes sense that the SSIC case requires

the most time of the three cases tested in this experiment because, as mentioned in the discussion

of the previous experiment, it seems that generating and testing for static chains at each step of the

path is a more computationally intensive task than testing just for direct effects via dynamic laws.

We also see in Figure 6.2 that the time required to compute the SSDC case quickly overtakes the

FCDC case in this experiment once the number of literals to explain exceeds 60. This can explained

by the fact that in the SSDC case, each of the 100 dynamic laws needs to be tested 100 times for

direct effects, one for each literal in the outcome, in each of the 100 steps of the generated path,

even though obviously only one dynamic law will apply at each step. In the FCIC case, however,

100 dynamic laws are tested only once for each of the 100 literals in the outcome because there is

only one step in the path. Considering these details, it is not surprising that the time required to

compute the SSDC case is greater than the time needed to compute the FCDC case for Experiment

2. We also see little to no change in time to compute the fully concurrent direct cause case in the 1

to 100 range, a point which is addressed in Experiment 3.

CHAPTER 6: EMPIRICAL STUDIES 6.1 FULL CONCURRENCY AND STRICT SEQUENCES

92

6.1.4 Experiment 3

The third experiment is motivated by the insight from the previous experiment that the approach

takes less than 1 second to compute the fully concurrent direct cause case for up to 100 literals. In

this experiment, we vary N from 1 to 1000 to get a better idea of how the performance changes for

problem instances with even more causes and literals to consider. For Experiment, given a value

N , N problem instances are created corresponding to the FCDC case. As a result of testing several

values of N for Experiment 3, we find that insight is gained when examining the results when

N = 1000.

Results. The approach requires approximately 0.4 seconds to explain 1000 literals caused by 1000

concurrent direct causes. We can see that this is the least challenging case to compute in this series

of experiments, seemingly due to the fact that each of the 1000 dynamic laws only needs to be tested

once for direct effects for each of the 1000 literals that need to be explained.

6.2 Single-Source Chains

The fourth experiment departs from analysis of fully concurrent and strict sequence cases and

directs focus to the static chain cases presented in the introduction of this section. Here, we look at

the time taken to explain indirect cause for single-source chains of length 1 through 1000.

6.2.1 Experiment 4

Given a value C, C problem instances for this experiment are generated as follows. For every value

in {1, . . . , C}, a problem instance is generated with 1 event and C initially false fluents. 1 dynamic

law is created for the single event, the head of which is the non-negated literal corresponding the

first of the C fluents. For every i ∈ {1, . . . , C}, there exists a state constraint linking the ith fluent in

C to the i+ 1th fluent (i.e., i+ 1 if i), and the outcome contains only the Cth fluent.

Results. The approach requires approximately 50 seconds required to explain a single literal that

was indirectly caused via a chain of events with 1000 links. Conclusions about the static chain, and

therefore indirect causation, are reached by first considering the direct effect of the single event e

and then testing each of the 1000 state constraints to see if any have become satisfied as a “side-

CHAPTER 6: EMPIRICAL STUDIES 6.2 SINGLE-SOURCE CHAINS

93

Figure 6.4: Observing the time required to explain up to and including 1000 literals for single-
source chains ranging in length from 1 to 1000 links.

effect” of e. From here, it needs to be determined whether or not the preconditions of any of the

1000 state constraints have become satisfied due to the consequence of a state constraint that has

become satisfied as an indirect effect of e, and in our case this process will occur 1000 times before

the outcome literal is finally linked to e’s direct effect. It is easy to imagine that the time needed

to compute causes for long static chains in more complex scenarios would increase dramatically,

but we believe that this experiment provides reasonable insight into the baseline performance of

the approach for long chains of indirect causation in the context of our framework. Next, we will

present an example of a more complicated scenario involving static chains.

6.3 Multi-Source Chains

In the final experiment, we examine the time required to compute multi-source chains with an

increasingly large set of source events and increasingly long static chains.

CHAPTER 6: EMPIRICAL STUDIES 6.3 MULTI-SOURCE CHAINS

94

6.3.1 Experiment 5

Given values C and N , C ∗N problem instances for this experiment are generated as follows. For

every value i in {1, . . . , C} and value j in {1, . . . , N}, an instance contains i ∗ j + 1 fluents, all of

which are negated in the initial state. The instance also includes j events, and one dynamic law

for each event, the head of which is a non-negated literal. For each event e, there also exist i state

constraints that create a static chain from e to a unique literal l. Finally, each unique l is a member

of the set of preconditions for a final state constraint, the head of which is a literal l′ which is not in

a precondition for any law and is the only member of the outcome. It may be convenient to think of

this problem instance as a set of distinct chain reactions (paths) through a state that only together

indirectly cause a literal to hold in that state.

Results. The approach requires approximately 1.2 seconds to compute a 10-source chain of length

1 and approximately 50 seconds to compute a 10-source chain of length 10. Something interesting

to note here is that even though 210 = 1, 024 sets need to be considered for the 10-source chains, the

chain of length 1 takes significantly less time to explain than the FCIC case that considers the same

number of sets (approximately 7 seconds to consider 10 simultaneous events). This is likely due

at least in part to the fact that in this case, we are explaining a single literal rather than 10, which

drastically reduces the number of tests that need to be made to explain the entire outcome. On a

related note, we see that the time to compute a 10-source chain of length 10 is significantly greater

than the time needed to compute the FCIC case at 10, by a factor of approximately 7. This is likely

due to the fact that the reasoner has to consider a larger number of state constraints in this case,

N ∗ C = 10 ∗ 10 = 100 rather than N = 10 for the fully concurrent indirect cause case.

6.4 Conclusions

In these studies, we have examined the performance of the approach under a variety of interesting

conditions and have reached some initial conclusions about the feasibility of the approach. Ex-

periments 1, 2, and 3 allow us to conclude that explaining multiple indirectly caused literals that

have become true as the result of a single transition is significantly more challenging than reason-

CHAPTER 6: EMPIRICAL STUDIES 6.4 CONCLUSIONS

95

Figure 6.5: Observing the time required to explain one literal for N-source chains range in
length from 1 to 10 links, where N ranges from 1 to 10.

ing about a similar scenario with direct causation. The insights gained from Experiments 4 and 5

indicate that there is a vast space of cases of indirect cause that can be represented and reasoned

about.

Although an exhaustive study of the entire space of possibilities is needed before general claims

have been made, we believe that these experiments show that the approach is promising. We have

demonstrated that the approach is able to explain causation in scenarios that clearly far exceed the

complexity of the toy examples from the literature, and although in certain challenging cases the

time needed to compute the causes is not nominal, the approach is able to reason arguably faster

that a human given the same problems and reasoning framework. We posit that an interesting open

problem is to investigate the enumeration of the space of scenario types, including but not limited

to cases of varying N values for multiple direct and/or indirect causes in a given scenario, multi-

source chains with direct and indirect causes, and scenarios that combine all of the types of cases

that we have examined here towards the creation of novel and challenging benchmark datasets and

compelling use cases inspired by complex real-world scenarios.

CHAPTER 6: EMPIRICAL STUDIES 6.4 CONCLUSIONS

96

Chapter 7: Related Work

In this Chapter, we will cover a selection of related work in the area of causality. First, we will

address the most well-known and widely studied approach in the field, the original work on the

counterfactual evaluation of structural causal models that sparked the initial interest in actual cause

within AI. We will discuss the limitations of the original approach, as well as attempts to amend and

improve the work. Next, we will present and discuss the approach that was the most influential to

the dissertation work which took an important step towards modeling a scenario as a sequence of

events that forces state to evolve. Following that, we will present and discuss the work that is most

closely related to ours, which leverages Situation Calculus and its solution to the frame problem

to identify the “achievement” of conditions expressed in first-order logic for a given situation of

interest.

7.1 HP Account of Actual Causation

The structural causal model of [54] is one of the most well-known and influential approaches to rep-

resenting and reasoning about causal relationships among variables. Here we present a definition

of structural causal models (SCM) and the HP approach to defining actual cause for SCMs.

Structural Causal Models.

An SCM is a triple M = 〈U, V, F 〉where:

• U is a set of background or exogenous random variables (RVs) that are determined by factors

outside of the model. No explanatory mechanisms exist in M for U .

• V is a set {V1, V2, ..., Vn} of endogenous RVs that are determined by variables inside the

model.

• F is a set of functions that maps U ∪ (V \Vi) to Vi. In words, F determines how the exogenous

and endogenous RVs affect the values of a specific endogenous RV in V .

97

A function in F determining the value of an RV X takes the form X := f(~Y) which states that

a cause of X taking on value x is an assignment~Y = ~y of a vector of non-X RVs in M such that

f(~y) = x. In this account, the notation ~X = ~x is shorthand for the conjunction of RV settings

X1 = x1 ∧ . . . Xn = xn. Note that the definition of functions in F requires that the equations

are acyclic by excluding X from the set of variables that can influence the value taken on by X .

Therefore, an assignment of values to exogenous RVs U determines a single possible setting of

values for RVs in V . For cases of actual causation, we can restrict the domain of RVs to {t, f} so that

they can be considered as propositional symbols [21]. This provides a convenient way to represent

RVs as ground atoms for evaluation against logic programming approaches to representing and

reasoning about actual cause.

Actual Cause.

In this section we reproduce the HP account of actual cause given in [3]. Here, M is a structural

causal model with endogenous RVs V , ~U = ~u is a setting of exogenous RVs, ~X = ~x is a setting of

RVs in M , and φ is a boolean formula of RVs. The notation (M,~u) |= ψ means that ψ is true in

(M,~u). The notation (M,~u) |= [~X ← ~x]φ means that φ holds in (M,~u) after setting RV vector ~X to

~x.

Definition 12. (HP account of actual causation)

~X = ~x is an actual cause of φ if the following three conditions hold:

AC1. (M,~u) |= (~X = ~x) ∧ φ.

AC2. There exists a partition (~Z, ~W) of V with ~X ⊆ ~Z and some setting (~x′, ~w′) of the variables in (~X, ~W)

such that if (M,~u) |= Z = z∗ for Z ∈ ~Z, then:

a. (M,~u) |= [~X ′ ← ~x, ~W ′ ← ~w′]¬φ.

b. (M,~u) |= [~X ′ ← ~x, ~W ′ ← ~w′, ~Z ′ ← ~z′]φ for all subsets ~W ′ of ~W and all subsets ~Z ′ of ~Z.

AC3. ~X is minimal; no subset of ~X satisfies satisfies conditions AC1 and AC2.

Condition AC1 states that both ~X = ~x and φ are true in the actual world. Condition AC2.a

requires that changing (~X, ~W) from (~x, ~w) to (~x′, ~w′) changes φ from true to false. Condition AC2.b

CHAPTER 7: RELATED WORK 7.1 HP ACCOUNT OF ACTUAL CAUSATION

98

states that setting any subset of variables in ~W to their values in ~w should have no effect on φ, as

long as ~X is kept at its current value ~x, even if all the variables in an arbitrary subset of ~Z are set

to their original values in ~u. The minimality condition AC3 ensures that only these elements of the

conjunction ~X = ~x are essential for changing φ in AC2(a) are considered part of the cause.

7.1.1 Discussion

The HP approach was a milestone for reasoning about actual causation in the context of Artificial

Intelligence, using structural equations and SCMs to model and reason about causal relationships

among variables. In the context of actual causation, structural equations work well for the kind of

“toy example” typically considered in the literature, and the approach indeed allows us to unearth

numerous sophisticated causation phenomena. However, we do not believe that it provides a suit-

able framework in which to reason certain advanced scenarios, including the behavior of complex

cyber-physical systems. This may be due, at least in part, to a lack of distinction between states

and events (or actions) that force state to evolve over time. In [13], the authors attempt to address

these limitations by modeling HP causality and counterfactuals in the situation calculus; however,

the approach requires the modeler to arbitrarily declare some variables as transitional and others

as enduring, where the former are meant to represent events and the latter represent fluents. More-

over, the approach does not require that situations are executable, which can result in a paradox for

cases of dismissed preconditions, as discussed in [20].

Another limitation of HP, and related approaches, is in the use of the counterfactual definition

of actual cause. As we stated in Chapter 1, this definition is inspired by the intuition that if X

caused Y , then not Y if not X [10, 58], and it has been pursued as a condition of actual causation

in numerous works [8, 9, 13, 59–61]. We have already discussed how the counterfactual criteria can

fail to recognize causation in a number of practical cases such as overdetermination, preemption,

and contributory cause [11, 12, 62]. Here we discuss these challenges to counterfactual definitions

of cause in greater detail, and point out how our approach handles these cases by referring to the

running example from Chapter 3.

In cases of overdetermination, removing one of the multiple sufficient causes from the scenario

CHAPTER 7: RELATED WORK 7.1 HP ACCOUNT OF ACTUAL CAUSATION

99

will not prevent the outcome from occurring. Therefore, if X and Y are both sufficient to cause Z,

the counterfactual definition of cause may not identifyX or Y as an actual cause because removing

one or the other will not prevent Z. In our running example, e1 and e2 occurred simultaneously in

the first state and each was sufficient to cause A regardless of the other event. Both were identified

as direct causes because both satisfied the definition of direct cause.

In cases of preemption, multiple sufficient causes have occurred, but the first cause to bring

about the effect preempts the potential effects of any other cause. The bottle breaking problem

presented in Chapter 4 is a well-known example of preemption from the literature. Counterfactual

definitions of actual cause will have trouble with this example because the bottle shattering is not

counterfactually dependent on either throw. In our extended example in Chapter 4, we correctly

identified that Suzy’s throw was a direct cause of the bottle breaking. In the running example, e5

occurred but was unable to cause C because e3 had already done so. Only e3 satisfied the definition

of direct cause. Note that sometimes a distinction is made between late and early preemption. An

example of the former is that Suzy’s rock reaches the bottle before Billy’s. An example of the latter

is Billy not throwing because Suzy has already thrown. We also introduced the notion of single-

transition preemption in Chapter 3, which posed a problem for the simple notion of indirect cause,

but is handled intuitively by the improved definition.

Finally, recall that contributory causes are causes which only together are sufficient to cause an

outcome. If X and Y are contributory causes for Z, the counterfactual definition of cause could

identify X and Y as actual causes because removing either of them will prevent the outcome, but

it can not tell us that X and Y must occur together in order to bring about Z. Recall that in our

example, e4 and e5 had to occur together to indirectly cause D to hold. We also saw an interesting

example of contributory cause in the Firing Squad example in Chapter (Examples).

More recent approaches such as [13, 14, 21] have addressed some of the shortcomings associ-

ated with the counterfactual criterion by modifying the existing definitions of actual cause or by

modeling change over time with some improved results. However, there is still no widely agreed

upon counterfactual definition of actual cause in spite of a considerably large body of work aiming

CHAPTER 7: RELATED WORK 7.1 HP ACCOUNT OF ACTUAL CAUSATION

100

to find one.

We have attempted to map the running example from Chapter 3 to a structural causal model

and found that the translation of the action description is not straightforward. Given the problem

ψE = 〈θE , ρE , ADE〉, it is conceivable that it may be possible to emulate this type of approach by

representing ADE as a Causal Bayes network (CBN) ADCBN , and iterating through the events vi ∈ v

to evaluate each statement “If vi had not been true, then θ would not be true”. A CBN is a probabilistic

directed acyclic graph modeling causal relationships among random variables (nodes). A possible

approach to translating causal laws of AD to ADCBN , is to add a node for every event and fluent

in AD and then to add a directed edge from node x to y when there exists a causal law such that x

causes y. However, several challenges arise in such a mapping, making the translation itself non-

trivial. The most notable involves translating laws in which a fluent f occurs, possibly negated,

both in the precondition and in its consequence. Consider this relatively simple law from ADE :

e1 causes A if ¬A

This law states that e1 can cause A to hold if it does not already hold. The translation approach

we outlined would require introducing two random variables,X = e1 and Y = A, where the values

of X and Y are 1 if they are true and 0 if they are false. Modeling the fact that the value of X affects

the value of Y is straightforward by adding a directed edge from X to Y , but it is not immediately

obvious how to model the fact that Y ’s value also affects X’s ability to take on the value 1. Adding

a directed edge from Y back to X violates the structure of a CBN by adding a cycle to the graph,

and omitting the link results in loss of commonsense knowledge and extending the definition of

CBNs to account for such a relationship, e.g., by parameterizing fluents with their time step, seems

non-trivial.

7.2 CP-logic Account of Actual Causation

In [21], the author identifies that a shortcoming of the definition of actual cause for SCMs is the lack

of accounting for the dynamic nature of stories – the HP definition considers only the final state of

CHAPTER 7: RELATED WORK 7.2 CP-LOGIC ACCOUNT OF ACTUAL CAUSATION

101

the world after all of the events have occurred and does not model how the state of the world

changes over time in response to events of a story. Vennekens claims that Shafer’s probability

trees [63] are more suitable for representing the dynamic nature of causal relations. A Shaferian

probability tree is a structure whose nodes represent states of the world and whose edges represent

transitions between them. [21] uses CP-logic to provide a syntactic representation of Shaferian trees

and defines actual cause for this structure.

The general form of a CP-law is as follows:

∀−→x (Aq : α1) ∨ . . . ∧ (An : αn)← φ

where φ is a first-order formula, Ai are atoms, −→x contains all free variables of φ and Ai, and

αi’s are non-zero probabilities such that
∑
αi ≤ 1. A CP-law states that logical formula φ causes

a non-deterministic event for which each Ai is a possible outcome with probability αi. A CP-law

with a deterministic effect is denoted by A← φ.

A collection of CP-laws is called a CP-theory T and describes the non-

deterministic evolution of a domain and is formally represented by a Shaferian probability tree

called an execution model. A branch b = (s0, . . . , sn) of an execution model corresponds to a specific

sequence of events that occur in a story, where s0, . . . , sn are states of the world each containing

all atoms in T and their values in that state. The values of all atoms in the initial state s0 are set to

false and the occurrence of events causes RVs to switch from false to true in subsequent states. The

event that causes a transition between states s1 and s2 is given by E(s1) which is the CP-law that

caused a transition between s1 and s2.

Under the CP-logic account, if one wants to determine if atom C is an actual cause of atom E

using a counterfactual approach, they begin by modifying the CP-Theory T so that there is a zero

probability that C will occur in the execution model of T . This is done by performing a transforma-

tion on each CP-law r of T to ensure that C does not belong to the head(r). The CP-theory resulting

from this transformation is T¬C .

In the interest of clarity of the presentation, we give a simplified interpretation of Vennekens’

CHAPTER 7: RELATED WORK 7.2 CP-LOGIC ACCOUNT OF ACTUAL CAUSATION

102

account of actual cause. The omitted details of the definition, as well as a definition of actual cause

in an incomplete information setting, are described by the author in [21].

Definition 13. (CP-logic account of actual causation)

Given a CP-theory T , let b = (s0, . . . , sn) be a branch of T ’s execution model. Let C and E be atoms that

both hold in the final state sn of b. C is an actual cause of E in branch b if C does not occur in the execution

model of ¬C.

In other words, C is an actual cause of E if preventing C’s occurrence in the story would cause

E to no longer hold. The definition enables the authors to handle preemption in the “blindingly

obvious” way, which is certainly quite intuitive: whichever event C was the first to produce the

outcomeC is the actual cause and anything that happens after the fact doesn’t count. This approach

captures the notion that it is not possible to cause something that has already occurred.

7.2.1 Discussion

As we have already stated, this approach is closely related to the dissertation work. The concise

handling of preemption in the approach strongly influenced our investigation into examining in-

trinsic causal mechanisms contained in a path, and we handle preemption in a similar way. How-

ever, there are two significant differences between the frameworks. The first is the lack of distinc-

tion between events and the state of the world, which by now we believe we have demonstrated

to be an important distinction to make when modeling scenarios and reasoning about actual cause.

The language consists of a single type of law that is not sensitive to the types of objects it relates.

The second difference is the CP-logic approach’s dependence on the counterfactual definition of

cause, the drawbacks of which we have already enumerated1.

In a turn from relying on counterfactual dependence alone, a more recent approach along this

line of investigation [9, 50] propose a principled approach to defining and analyzing actual causa-

tion starting from concepts of counterfactual dependence, contribution, and production, positing

that definitions of actual cause could be built from a deeper understanding of the relationships

among these concepts as first principles. An even more recent approach [16] introduces a new
1Preemption excluded, in this case.

CHAPTER 7: RELATED WORK 7.2 CP-LOGIC ACCOUNT OF ACTUAL CAUSATION

103

language related to CP-Logic in which causal mechanisms and causal processes are represented in

formal logic, allowing the authors to define concepts of causal production for building a framework

of actual causation. While there is an obvious relationship between these more recent approaches

and the approach of the dissertation, the nature of this relationship is not yet clear and this analysis

is left for future work, likely in collaboration with the authors.

7.3 Situation Calculus Semantics for Actual Causality

In one of the most related known research to the dissertation work, the authors of [19] depart

from a strictly counterfactual approach, using a similar insight to our own that actual causation

can be determined by reasoning about what has actually happened in a given scenario rather than

hypothesizing about counterfactual worlds, at least in finding what caused an outcome to “appear”

in a scenario. Leveraging the Situation Calculus (SC) to formalize knowledge, the approach aims to

identify a single event that has caused an SC formula ϕ to become true in a situation, and then uses

a single-step regression approach to identify a list of events deemed relevant to the event’s ability

to realize ϕ.

In SC, a dynamic world is modeled as a progression through situations in response to actions

being performed in the world. SC was originally proposed in [39] and extended by [64], an impor-

tant contribution of which was a proposed solution to the frame problem discussed in Chapter 2.

The latter of the two is the formalism of choice for [19] because, as they state, it allows them to take

advantage of some of the findings of the earlier cited investigation by [13], in which the authors

attempted to redefine counterfactuals in the context of SC. In the interest of clarity of the presen-

tation, we will provide sufficient background of SC to give an overview of the causal reasoning

approach, but detailed presentations of the approach and SC as it pertains to it are described in

[19].

In the SC formalism, a constant S0 denotes the initial situation and represents an empty list

of actions. A situation term do([α1, . . . , αn], S0) is the situation that results from executing actions

α1, . . . , αn consecutively. When none of the action terms have variables, then the situation term

is an (actual) narrative. A basic action theory (BAT) D includes axioms DS0
describing the initial

CHAPTER 7: RELATED WORK 7.3 SITUATION CALCULUS SEMANTICS FOR ACTUAL CAUSALITY

104

situation, action precondition axioms DS0 stating when and action a can be executed in a situa-

tion s, as well as a successor state axiom (SSA) for each fluent F in the model which capture the

“non-effects” of actions. BAT D additionally contains auxiliary axioms including abbreviations

executable(s) indicating that every action in s was executable in s, as well as state constraints that

represent conditions that are true in every state. The basic computational challenge of SC, called

the projection problem, is the task of determining if a BAT entails ϕ(σ) for a ground situation term σ,

and ϕ(σ) is a logical formula that is true, or uniform, in σ.

[19] builds upon this foundation to define and reason about actual cause. A scenario is repre-

sented by a causal setting, a triple 〈D, σ, ϕ(σ)〉 where D is a BAT, σ is a ground situation term such

that the every action in σ executable in the situation, and ϕ(σ) is a formula uniform in σ. The au-

thors claim that if an action α of the action sequence triggers the formula ϕ(σ) to change its truth

value from false to true and if there is no action in σ after α that changes the formula’s value back to

false, then α is an actual cause of achieving ϕ(σ) in σ). The authors formally define α as a primary

achievement cause of ϕ(σ) with respect to the causal setting.

The authors claim that this event is not sufficient to explain how ϕ(σ) became true, as other

actions in σ occurring before αmay have played a role in the incremental “build up” to the eventual

achievement of the ϕ(σ). The authors then use a single-step regression operator to reason backward

over the scenario, yielding a new formula ϕ′(σ) (and corresponding causal setting) that enabled α’s

causing of ϕ(σ). An achievement cause α′ in σ may be found for ϕ′(σ), and is deemed part of the

actual cause of ϕ(σ). The approach is repeated until the beginning of the scenario has been reached

at which point no further causal settings are yielded and the resulting set of actions is referred to

as the achievement causal chain.

7.3.1 Discussion

It is easy to see that there is a clear conceptual relationship between the notion of achievement

and the transition states of the dissertation framework. However, the underlying notions of actual

cause and the choice of SC as a formalism lead to several notable differences with the dissertation

work.

CHAPTER 7: RELATED WORK 7.3 SITUATION CALCULUS SEMANTICS FOR ACTUAL CAUSALITY

105

There are two primary differences in the definitions of actual cause. First, the authors claim that

a formula has been caused only if it has not later been “un-caused” by a subsequent event. This

implies that they are asking “Why did X hold at the end of the scenario?” rather than “What caused

X to hold in the scenario”? This is an important distinction, and we believe that they impose an

unnecessary condition on the achievement causal chain that might result in non-intuitive results.

For example, consider the following action description AD:

e1 causes A (7.1)

e2 causes ¬A (7.2)

Consider now a path ρ = 〈σ1, ε1, σ2, ε2, σ3〉 in which ¬A ∈ σ1, ε1 = {e1}, and ε2 = {e2}. Clearly,

A ∈ σ2 and ¬A ∈ σ3. If the outcome of interest is θ = A. We claim that we should identify e1 as a

direct cause of A for transition state σ2 of θ in ρ, even though the outcome was no longer satisfied

in the subsequent state. Mapping this example to the approach of [19], it seems that A would not

be considered to be caused at all because it did not hold at the end of the scenario.

The second important difference is the notion of the achievement causal chain. In [19], they

define actual cause in terms of every event that helped to “set the stage” for an action to cause a

formula to change its truth value from false to true. This means that every single event that had any

influence on causation is part of the cause. Although this can be a nice feature for simple examples,

we find that in practical settings this definition casts too wide a net and surely would return events

that are of no interest to the user asking for a causal explanation. In fact, the subject of transitiv-

ity as a general condition for cause is still being examined [50, 65], and several counterexamples

have been examined that demonstrate transitivity should not always be considered when reason-

ing about actual causation (see, e.g., [50, 54]). We have demonstrated over multiple examples in

Chapter 4 that our definitions can be used to uncover deeper aspects of a causal mechanism at will,

rather than identifying every event that contributed in any way to causing an outcome of interest to

hold. However, since there are certainly cases in which automating the deeper reasoning approach

CHAPTER 7: RELATED WORK 7.3 SITUATION CALCULUS SEMANTICS FOR ACTUAL CAUSALITY

106

would be desirable, it may be possible to identify notions of supporting causes defined in terms of

the preconditions of the dynamic laws, state constraints, and executability conditions of an action

description, as we have shown in [53].

A related work by the same authors [20] also introduces the notion of a maintenance cause, which

“protects” a previously achieved effect from potential causes that could have “destroyed” the effect.

This consideration differs from our approach, but is an important consideration and an interesting

direction for future work. We propose that it could be possible to extend our approach to perform a

type of counterfactual reasoning over the paths to achieve a similar definition, perhaps leveraging

insights from our initial investigation into defining notions of cause in the context of AL[66].

The choice of SC as a formalism also results in some notable differences in the technical ap-

proach and reasoning capabilities. In Reiter’s SC, a situation is a finite sequence of actions, which is

notably contrary to the original definition of [39] which considers states. Reiter states in [67]:

“A situation is a finite sequence of actions. Period. It’s not a state, it’s not a snapshot, it’s a

history.”

Examining and analyzing Reiter’s choice of representation is beyond the scope of the disserta-

tion work and will not be discussed in any great detail here, however it is important to note that

we consider this point of view and the resulting formalism to be a significant underlying drawback

to the causal reasoning approach from the outset.

Consider the position that philosophical and mathematical accounts of actual causation aim

to take steps towards emulating the level of intuition used by humans when reasoning about the

actual cause of an outcome in a given scenario. In addition to retaining the sequence of events that

have occurred, we often employ an understanding of the context in which the events have occurred

to form a picture of how the state of the world has changed as a result. In this way, we gain a deeper

understanding of the meaning of the events and their causal influence. We posit that paths of an

action description, which include complete descriptions of events in each state as well as the events

that have occurred, map more naturally to human intuition as we have proposed it here than simply

a sequence of the events. Under this consideration, Reiter’s position that a history consists only of

CHAPTER 7: RELATED WORK 7.3 SITUATION CALCULUS SEMANTICS FOR ACTUAL CAUSALITY

107

actions seems incomplete2. This point is arguable, however, it is our position that an account of

actual causation that is intended for the benefit of humans should reflect our reasoning approaches

as clearly as possible so that its results can be consumed in a straightforward and intuitive way.

Another important distinction between the choices of formalism is that SC allows only for the

concurrent execution of singular actions, whereas the semantics ofAL permits the co-occurrence of

events. In reality, events occur simultaneously and this definition limits Batusov’s ability to model

such a situation. Although concurrency of actions has been explored for SC [23, 68], the authors

state that it is not a feature of their approach and it is not immediately clear how the definitions

should be extended to enable such support.

Compared to AL formalizations, SC formalizations also incur limitations when it comes to the

representations of indirect effects of actions, which play an important role in our work, and the

elaboration tolerance of the formalization. Additionally, SC relies on First-Order Logic, while AL

features an independent and arguably simpler semantics.

7.4 Additional Approaches

Finally, it should be noted that a number of other interesting approaches exist linking causality and

non-monotonic reasoning. We discuss one in some detail here and provide some closing discussion

on research directions relating these topics.

7.4.1 Causal Logic Programming

Another interesting, although less related, approach to reasoning about cause in logic program-

ming is given by [69]. This work presents a causal extension of logic programming under stable

model semantics which enables the representation of alternate causes of each true atom in the solu-

tion of a logic program. These representations are called causal proofs which are trees encoding the

ordered application of logic rules that resulted in the truth (or falsehood) of the atom in question.

The trees are obtained by adding labels to rules. Consider the Yale Shooting Scenario of [52]:

There is a turkey called Fred and shooting a loaded gun will kill it. Suzy loads the gun

2Imagine if history books were simply timelines.

CHAPTER 7: RELATED WORK 7.4 ADDITIONAL APPROACHES

108

and then shoots.

This scenario can be modeled as follows using causal logic programming:

r1 : dead ← shoot, loaded suzy1 : load

r2 : loaded ← load suzy2 : shoot

where the symbols on the left of the colons are the rule labels. While we will not go into the details

of this approach here, the Yale Shooting program will result in the atom dead being true, and the

following is the causal proof showing how this atom was derived.

Figure 7.1: Causal proof of atom dead for Yale Shooting program

This work is extended by [70] in which the author introduces causal literals which “inspects” the

causal proofs in order to enable further reasoning. The author adds the following rule to the Yale

Shooting program that corresponds to the final sentence of the elaborated scenario:

r3 : prison← (suzy :: dead)

Here, (suzy :: dead) is a causal literal which holds when the suzy actions suzy1 and suzy2 have

been determined to be sufficient causes of dead by inspecting the causal proof. As we can see in

Figure 7.1, the atoms suzy1 and suzy2 together have been sufficient to cause r1 to fire, making dead

true.

CHAPTER 7: RELATED WORK 7.4 ADDITIONAL APPROACHES

109

7.4.2 Discussion

While this work is somewhat less related to the dissertation work than the first two works covered

in this section, there is a clear relationship in that this approach creates partial paths as we have

defined them here. Consider again Figure 7.1. We consider that it may be possible to link causal

proofs to the paths of our framework which can lead to interesting synergies yet to be explored.

There are numerous additional research efforts in this area, with varying goals (e.g. encoding

the HP account via Logic Programming approaches [61, 71], explaining answer sets of ASP pro-

grams [72, 73], and reasoning about causal information [70, 74–77]) in the context of non-monotonic

reasoning. Research relating these topics is steadily advancing, prompting interdisciplinary dis-

cussion and exploration of the role and placement of causal reasoning and LP in the landscape of

modern computer theory and the software industry.

CHAPTER 7: RELATED WORK 7.4 ADDITIONAL APPROACHES

110

Chapter 8: Conclusions and Future Work

The result this dissertation work is a theoretical framework for reasoning about actual cause that

leverages techniques from reasoning about actions and change, and an implementation of the

framework via ASP that is sound and complete. We have demonstrated that framework lever-

ages intuitive and iconic representations of scenarios as the evolution of state over time in response

to events. The framework can be used to reason about direct and indirect causal influence of events

over the state of the world, and can overcome traditionally challenging cases of actual cause that in-

volve overdetermination, preemption, and contributory causation. We have shown that the frame-

work identifies intuitive answers to a number of classic examples from the literature, as well as

for a novel scenario in which reports from independently acting modules of a self-driving car are

reasoned over to assign blame for unexpected behavior in a crash scenario. We have also demon-

strated that the implementation of the framework is able to explain causation in scenarios that far

exceed the complexity of the toy examples from the literature. Although in certain challenging

cases the time needed to compute the causes is not nominal, the implementation reasons about the

scenarios arguably faster that a human could given the same problems and reasoning framework.

8.1 Open Problems

Recall from our discussion in Chapter 7 that, in our examples, we have relied on human reasoning

to identify the preconditions of events to create new problems that can be used to identify events

that “set the stage” for a causing event of an outcome. As we discussed in Chapter 7, it can be

desirable to have control over which preconditions of which events we would like to explain. It is

easy to imagine, however, that in a complicated scenario that spans a great deal of time, a human

would not want a causal explanation of every single event that contributed to a given outcome as

likely not every event is directly relevant to the outcome. As we stated in that discussion, we believe

that it is possible to identify notions of supporting causes defined in terms of the preconditions of

111

the dynamic laws, state constraints, and executability conditions of an action description, as we

explored in [53] for a simpler version of the framework which did not support concurrent events.

For example, given a dynamic causal law λ inAD of form e causes l0 if {l1, . . . , ln}, let e(λ) = e,

c(λ) = l0, and p(λ) = {l1, . . . , ln}. We can use a similar representation for executability conditions

and state constraints, and can then introduce a set of definitions using which preconditions can

be “extracted” from these laws. For instance in our running example, the literals ¬A would be

in a set prec(e1, ρE) of preconditions of law (3.1). In such a case new outcomes of interest can be

constructed from the preconditions of laws in order to uncover additional information about the

actual causal dynamics in a path.

We have also identified a case in which our framework identifies partially counter-intuitive

subsets of elementary events as indirect causes. Consider the following action description:

e1 causes d1 (8.1)

e2 causes d2 (8.2)

i1 if d1 (8.3)

i2 if d2 (8.4)

Consider now a transition 〈σ, ε, σ′〉 for which σ = {¬d1,¬d2,¬i1,¬i2}, ε = {e1, e2}, and σ′ =

{d1, d2, i1, i2}. Let the outcome of interest be θ = {i1}. Due to the definitions of static chains and the

improved definition of indirect cause, both {e1} and {e1, e2}will be identified as indirect causes of

d1, even though intuitively one might expect only e1 to be an indirect cause.

To understand how the two indirect causes are derived, recall that by Definition 9 of static

chains, a state constraint s is a member of a link in a static chain χ(ε, l, σ′) if its preconditions

are caused to be satisfied in σ′ in part by the direct effects of one or more elementary events of

ε. Therefore, the static chain χ({e1, e2}, l, σ′) will consist of a single link γ1 containing laws (8.3)

and (8.4), and i1 ∈ C(γ1). Considering now Definition 10, condition 2 is not sufficient to filter out

the extraneous event e2 in this case because e2’s direct effect is a member of P (γ1). However, we

CHAPTER 8: CONCLUSIONS AND FUTURE WORK 8.1 OPEN PROBLEMS

112

speculate that the definition of static chain can be expanded by reasoning backward from every state

constraint s for which the literal of interest is the consequence, and whose preconditions hold in

the state of interest. We propose that we then build the static chain by linking the consequences

and preconditions of state constraints in an action description until one or more dynamic laws

are found whose consequence initiated the chain of indirect causing. Considering again our new

counterexample, we speculate that we would only identify {e1} as an indirect cause of d1 because

the state constraint (8.3) is the only law in the action description for which i1 is its consequence,

and (8.3)’s preconditions can be linked to the dynamic law (8.1) via its consequence d1. Since the

consequence of (8.1) is e1, it would be an indirect cause of d1. We also believe that it may be possible

to leverage the causal process representation language of [16] to enable reasoning about the causal

process in a state of interest.

8.2 Future Work

In addition to addressing the open problems discussed in the previous section, we believe that

several compelling research directions stem from this dissertation.

There is work to be done in extending the representation capabilities of the framework. While

the language AL allows us to elegantly describe the direct and indirect effects of events in a dy-

namic domain, it does not naturally support representations of certain realistic cases in causation

such as direct contributory causes, time delayed effects, non-deterministic actions and cases in

which events are triggered by other events and/or circumstances. An important next step along

these lines will involve exploring generalization of the framework to any representation language

that describes a transition diagram, and in which one can identify direct causes, state constraints,

preconditions, and consequences.

Along the lines of exploring different types of causes, one type of causation that the framework

currently does not support is cause by omission. In such a case, the absence of X is the cause of

Y . For example, the failure of Suzy to shoot the turkey is a cause for it being alive at the end of a

scenario. In this case, it is easy to imagine that searching paths for transition states would not be

a reasonable approach to solve this, rather, we may want to employ some kind of counterfactual

CHAPTER 8: CONCLUSIONS AND FUTURE WORK 8.2 FUTURE WORK

113

reasoning to determine if there are any possible counterfactual divergences from the scenario that

would have resulted in the outcome not being true. Another example of cause by omission might

involve modeling (possibly continuous) time-dependent effects. Say for instance that a grandfather

clock’s casing is too small for the swinging range of its pendulum. If the clock-maker does not

stop the pendulum from swinging, then the casing will eventually break. In this case, searching

for a transition state would make sense if we want to know why the casing has broken, but some

counterfactual reasoning would still be required to reason about what could have happened to

prevent this outcome. Cause by omission has been studied extensively in [78] and [79], among

others, although the approaches cited here would appear to serve as a good starting point for

research as their work is also based on models of causation that are inspired by how humans reason

about causal influence. We also speculate that it may be possible to extend our framework to

address problems of this type by leveraging recent work in planning for hybrid domains [80, 81].

Finally, the specification of sophisticated, real-world inspired use cases should be explored to

identify requirements for the framework’s application in practical settings. Exploring these lines

of investigation is likely to yield results and intuitions that lead to the discovery of interesting

(possibly unexpected) application areas, the development of novel and challenging benchmark

datasets, and may eventually inform the design and development of complex, intelligent software

systems that are able to explain their behaviors and decisions in intuitive ways.

CHAPTER 8: CONCLUSIONS AND FUTURE WORK 8.2 FUTURE WORK

114

Bibliography

[1] Charles E Carpenter. Concurrent causation. University of Pennsylvania Law Review and American

Law Register, 83(8):941–952, 1935.

[2] Judea Pearl. Causality: models, reasoning and inference. Econometric Theory, 19(675-685):46,

2000.

[3] Joseph Y Halpern and Judea Pearl. Causes and explanations: A structural-model approach.

part i: Causes. The British journal for the philosophy of science, 56(4):843–887, 2005.

[4] Joseph Y Halpern. Axiomatizing causal reasoning. Journal of Artificial Intelligence Research, 12:

317–337, 2000.

[5] Judea Pearl. On the definition of actual cause. Technical report, University of California, 1998.

[6] Brad Weslake. A partial theory of actual causation. British Journal for the Philosophy of Science,

2015.

[7] Ned Hall, Laurie A Paul, et al. Causation and preemption. Philosophy of science today, pages

100–130, 2003.

[8] Ned Hall. Structural equations and causation. Philosophical Studies, 132(1):109–136, 2007.

[9] Sander Beckers and Joost Vennekens. A general framework for defining and extending actual

causation using cp-logic. International Journal of Approximate Reasoning, 77:105–126, 2016.

[10] David Lewis. Causation. The journal of philosophy, 70(17):556–567, 1973.

[11] Clark Glymour and David Danks. Actual causation: a stone soup essay. Synthese, 175(2):

169–192, 2010.

[12] Peter Menzies. Counterfactual theories of causation. The Stanford Encyclopedia of Philosophy,

2001.

[13] Mark Hopkins and Judea Pearl. Causality and counterfactuals in the situation calculus. Journal

of Logic and Computation, 17(5):939–953, 2007.

[14] Joseph Y Halpern. Actual causality. MIT Press, 2016.

[15] Sander Beckers and Joost Vennekens. The Transitivity and Asymmetry of Actual Causation.

Ergo, an Open Access Journal of Philosophy, 4, January 2017. doi: 10.3998/ergo.12405314.0004.

001. URL https://lirias.kuleuven.be/handle/123456789/570017.

[16] Marc Denecker, Bart Bogaerts, and Joost Vennekens. Explaining actual causation in terms

of possible causal processes. In 16th Edition of the European Conference on Logics in Artificial

Intelligence. Springer, 2019.

115

[17] Joost Vennekens. Actual causation in cp-logic. Theory and Practice of Logic Programming, 11

(4-5):647–662, 2011.

[18] Chitta Baral and Michael Gelfond. Reasoning agents in dynamic domains. In Logic-based

artificial intelligence, pages 257–279. Springer, 2000.

[19] Vitaliy Batusov and Mikhail Soutchanski. Situation calculus semantics for actual causality. In

Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[20] Vitaliy Batusov and Mikhail Soutchanski. Situation calculus semantics for actual causality. In

13th International Symposium on Commonsense Reasoning. University College London, UK. Monday,

November, volume 6, 2017.

[21] Joost Vennekens. Actual causation in cp-logic. Theory and Practice of Logic Programming, 11

(4-5):647–662, 2011.

[22] Enrico Giunchiglia, Joohyung Lee, Vladimir Lifschitz, Norman McCain, and Hudson Turner.

Nonmonotonic causal theories. Artificial Intelligence, 153(1-2):49–104, 2004.

[23] Raymond Reiter. Natural actions, concurrency and continuous time in the situation calculus.

KR, 96:2–13, 1996.

[24] Sandeep Chintabathina, Michael Gelfond, and Richard Watson. Modeling hybrid domains

using process description language. In In Proceedings of ASP ’05 Answer Set Programming: Ad-

vances in Theory and Implementation,, volume 6, pages 303–317.

[25] Chitta Baral, Nam Tran, and Le-Chi Tuan. Reasoning about actions in a probabilistic setting.

In AAAI/IAAI, pages 507–512, 2002.

[26] Chitta Baral, Michael Gelfond, and Nelson Rushton. Probabilistic reasoning with answer sets.

Theory and Practice of Logic Programming, 9(1):57–144, 2009.

[27] Michael Gelfond and Richard Watson. Diagnostics with answer sets: Dealing with unobserv-

able fluents. In Proceedings of the 3rd International Workshop on Cognitive Robotics-CogRob’02,

pages 44–51, 2002.

[28] J. McCarthy and P. J. Hayes. Some philosophical problems from the standpoint of artificial

intelligence. Readings in artificial intelligence, pages 431–450, 1969.

[29] Vladimir Lifschitz. Formal theories of action (preliminary report). In IJCAI, pages 966–972.

Citeseer, 1987.

[30] Brian A Haugh. Simple causal minimizations for temporal persistence and projection. In

AAAI, pages 218–223, 1987.

[31] Michael Gelfond and Vladimir Lifschitz. Representing Action and Change by Logic Programs.

Journal of Logic Programming, 17(2–4):301–321, 1993.

BIBLIOGRAPHY

116

[32] Fangzhen Lin. Embracing causality in specifying the indeterminate effects of actions. In

Proceedings of the thirteenth national conference on Artificial intelligence-Volume 1, pages 670–676.

AAAI Press, 1996.

[33] Norman McCain, Hudson Turner, et al. Causal theories of action and change. In AAAI/IAAI,

pages 460–465, 1997.

[34] Michael Thielscher. Ramification and causality. Artificial intelligence, 89(1-2):317–364, 1997.

[35] Michael Gelfond and Vladimir Lifschitz. Action languages. In E;ectronic Transactions on AI,

volume 3(16), 1998.

[36] Marcello Balduccini and Emily LeBlanc. Action-centered information retrieval, March 7 2019.

US Patent App. 16/121,674.

[37] Norman McCain and Hudson Turner. A causal theory of ramifications and qualifications. In

IJCAI, volume 95, pages 1978–1984, 1995.

[38] Vladimir Lifschitz. On the logic of causal explanation. Artificial Intelligence, 96(2):451–465,

1997.

[39] Patrick J. Hayes and John McCarthy. Some Philosophical Problems from the Standpoint of

Artificial Intelligence. In B. Meltzer and D. Michie, editors, Machine Intelligence 4, pages 463–

502. Edinburgh University Press, 1969.

[40] Murray Shanahan et al. Solving the frame problem: a mathematical investigation of the common

sense law of inertia. MIT press, 1997.

[41] Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic programming.

In ICLP/SLP, volume 88, pages 1070–1080, 1988.

[42] Michael Gelfond and Vladimir Lifschitz. Classical negation in logic programs and disjunctive

databases. New generation computing, 9(3-4):365–385, 1991.

[43] Marcello Balduccini and Michael Gelfond. Diagnostic reasoning with A-Prolog. Journal of

Theory and Practice of Logic Programming (TPLP), 3(4–5):425–461, Jul 2003.

[44] Jürgen Dix, Ugur Kuter, and Dana Nau. Planning in answer set programming using ordered

task decomposition. In Annual Conference on Artificial Intelligence, pages 490–504. Springer,

2003.

[45] Thomas Eiter, Wolfgang Faber, Nicola Leone, Gerald Pfeifer, and Axel Polleres. Answer set

planning under action costs. Journal of Artificial Intelligence Research, 19:25–71, 2003.

[46] Esra Erdem, Michael Gelfond, and Nicola Leone. Applications of answer set programming.

AI Magazine, 37(3), 2016.

[47] Francesco Calimeri, Wolfgang Faber, Martin Gebser, Giovambattista Ianni, Roland Kaminski,

Thomas Krennwallner, Nicola Leone, Francesco Ricca, and Torsten Schaub. Asp-core-2: Input

language format. ASP Standardization Working Group, 2012.

BIBLIOGRAPHY

117

[48] Emily LeBlanc, Marcello Balduccini, and Joost Vennekens. Explaining actual causation via

reasoning about actions and change. In European Conference on Logics in Artificial Intelligence,

pages 231–246. Springer, 2019.

[49] Ned Hall. Two concepts of causation. Causation and counterfactuals, pages 225–276, 2004.

[50] Sander Beckers and Joost Vennekens. The transitivity and asymmetry of actual causation.

2017.

[51] Bertram F Malle, Steve Guglielmo, and Andrew E Monroe. A theory of blame. Psychological

Inquiry, 25(2):147–186, 2014.

[52] Steve Hanks and Drew McDermott. Nonmonotonic logic and temporal projection. Artificial

intelligence, 33(3):379–412, 1987.

[53] Emily LeBlanc. Explaining actual causation via reasoning about actions and change. In Tech-

nical Communications of the 34th Int’l. Conference on Logic Programming (ICLP’18), August 2018.

[54] Judea Pearl. Causality: models, reasoning, and inference. 2000.

[55] Kichun Jo, Junsoo Kim, Dongchul Kim, Chulhoon Jang, and Myoungho Sunwoo. Develop-

ment of autonomous car—part i: Distributed system architecture and development process.

IEEE Transactions on Industrial Electronics, 61(12):7131–7140, 2014.

[56] Vladimir Lifschitz and Hudson Turner. Splitting a logic program. In ICLP, volume 94, pages

23–37, 1994.

[57] Hudson Turner. Splitting a default theory. In AAAI/IAAI, Vol. 1, pages 645–651, 1996.

[58] David Hume. A treatise of human nature [1739]. British Moralists, pages 1650–1800, 1978.

[59] Brad Weslake. A partial theory of actual causation. 2015.

[60] Thomas Eiter and Thomas Lukasiewicz. Complexity results for structure-based causality. Ar-

tif. Intell., 142(1):53–89, November 2002. ISSN 0004-3702. doi: 10.1016/S0004-3702(02)00271-0.

URL http://dx.doi.org/10.1016/S0004-3702(02)00271-0.

[61] Chitta Baral and Matt Hunsaker. Using the probabilistic logic programming language p-log

for causal and counterfactual reasoning and non-naive conditioning. In IJCAI, pages 243–249,

2007.

[62] Dan B Dobbs. Rethinking actual causation in tort law. 2017.

[63] Glenn Shafer. The art of causal conjecture. MIT press, 1996.

[64] Raymond Reiter. Knowledge in action: logical foundations for specifying and implementing dynami-

cal systems. MIT press, 2001.

[65] Jean-François Bonnefon, Rui Da Silva Neves, Didier Dubois, and Henri Prade. Qualitative and

quantitative conditions for the transitivity of perceived causation. Annals of Mathematics and

Artificial Intelligence, 64(2-3):311–333, 2012.

BIBLIOGRAPHY

118

[66] Emily LeBlanc and Marcello Balduccini. Contextual representations of cause via reasoning

about actions and change. 2017.

[67] Raymond Reiter. The situation calculus ontology. Technical report, Electronic News Journal

on Reasoning about Actions and Change, 1997.

[68] Fangzhen Lin and Yoav Shoham. Concurrent actions in the situation calculus. In AAAI, vol-

ume 92, pages 590–595, 1992.

[69] Pedro Cabalar. Causal logic programming. Correct Reasoning, 7265:102–116, 2012.

[70] Jorge Fandinno. Towards deriving conclusions from cause-effect relations. Fundamenta Infor-

maticae, 147(1):93–131, 2016.

[71] Alexander Bochman and Vladimir Lifschitz. Pearl’s causality in a logical setting. In AAAI,

pages 1446–1452, 2015.

[72] Pedro Cabalar, Jorge Fandinno, and Michael Fink. Causal graph justifications of logic pro-

grams. Theory and Practice of Logic Programming, 14(4-5):603–618, 2014.

[73] Enrico Pontelli, Tran Cao Son, and Omar Elkhatib. Justifications for logic programs under

answer set semantics. Theory and Practice of Logic Programming, 9(1):1–56, 2009.

[74] Jorge Fandinno. Deriving conclusions from non-monotonic cause-effect relations. Theory and

Practice of Logic Programming, 16(5-6):670–687, 2016.

[75] Luıs Moniz Pereira and Ari Saptawijaya. Counterfactuals, logic programming and agent

morality. R. Urbaniak, G. Payette (eds.), Applications of Formal Philosophy: The Road Less Trav-

elled, Springer Logic, Argumentation & Reasoning series, 20187.

[76] Jean-François Bonnefon, Rui Da Silva Neves, Didier Dubois, and Henri Prade. Predicting

causality ascriptions from background knowledge: Model and experimental validation. Inter-

national Journal of Approximate Reasoning, 48(3):752–765, 2008.

[77] Salem Benferhat, Jean-François Bonnefon, Philippe Chassy, Rui Da Silva Neves, Didier

Dubois, Florence Dupin de Saint-Cyr, Daniel Kayser, Farid Nouioua, Sara Nouioua-

Boutouhami, Henri Prade, et al. A comparative study of six formal models of causal ascription.

In International Conference on Scalable Uncertainty Management, pages 47–62. Springer, 2008.

[78] Paul Bello and Sangeet Khemlani. A model-based theory of omissive causation. In CogSci,

2015.

[79] Sangeet Khemlani, Christina Wasylyshyn, Gordon Briggs, and Paul Bello. Mental models and

omissive causation. Memory & cognition, 46(8):1344–1359, 2018.

[80] Marcello Balduccini, Daniele Magazzeni, Marco Maratea, and Emily C Leblanc. Casp solutions

for planning in hybrid domains. Theory and Practice of Logic Programming, 17(4):591–633, 2017.

[81] Maria Fox and Derek Long. Modelling mixed discrete-continuous domains for planning. Jour-

nal of Artificial Intelligence Research, 27:235–297, 2006.

BIBLIOGRAPHY

119

Vita

Emily Cooper LeBlanc received a Bachelor of Science in Computer Science from Temple University

in Philadelphia, Pennsylvania in May of 2013. She received her Masters in Computer Science from

Drexel University in Philadelphia, Pennsylvania in June of 2017. She received her PhD in Computer

Science with a focus on Logic-Based Causal Reasoning. In her time at Drexel, she published two

journal articles, one main conference paper, two technical communications, and seven workshop

papers. She won the Best Doctoral Consortium Paper award at the 34th International Conference

on Logic Programming in 2018. Publication titles include:

• Reasoning about Problems of Actual Causation using an Action Language Approach

• Explaining Actual Causation via Reasoning about Actions and Change

• Action-Centered Information Retrieval

• CASP Solutions for Planning in Hybrid Domains

• Military Ontologies for Information Dissemination at the Tactical Edge

• Ontologies and Rich Metadata for Materials Scientific Data Analysis

The full list of publications can be found on her website at www.eleblanc.ai. She has two pend-

ing patents. She has been involved in a number of research projects in her time at Drexel, including

work with the Defense Advanced Research Projects Agency (DARPA), the National Science Foun-

dation (NSF), and the Federal Highway Administration (FHWA). She was a teaching assistant for

approximately two years in total, and was promoted to Lead Graduate Teaching Assistant in 2019.

She is a member of the Upsilon Pi Epsilon Honors Society (UPE). She has given multiple invited

talks, the most recent of which was given on her dissertation work at the Navy Center for Ap-

plied Research in Artificial Intelligence (NCARAI) Symposium Series at the U.S. Naval Research

Laboratory in 2019.

